Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations

Juraj Húska; Peter Poláčik; Mikhail V. Safonov

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 5, page 711-739
  • ISSN: 0294-1449

How to cite

top

Húska, Juraj, Poláčik, Peter, and Safonov, Mikhail V.. "Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 711-739. <http://eudml.org/doc/78756>.

@article{Húska2007,
author = {Húska, Juraj, Poláčik, Peter, Safonov, Mikhail V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {positive entire solutions; robustness; Dirichlet problem},
language = {eng},
number = {5},
pages = {711-739},
publisher = {Elsevier},
title = {Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations},
url = {http://eudml.org/doc/78756},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Húska, Juraj
AU - Poláčik, Peter
AU - Safonov, Mikhail V.
TI - Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 711
EP - 739
LA - eng
KW - positive entire solutions; robustness; Dirichlet problem
UR - http://eudml.org/doc/78756
ER -

References

top
  1. [1] Aronson D.G., Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa22 (1968) 607-694. Zbl0182.13802MR435594
  2. [2] Arrieta J.M., Elliptic equations, principal eigenvalue and dependence on the domain, Comm. Partial Differential Equations21 (1996) 971-991. Zbl0857.35092MR1391529
  3. [3] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1994) 47-92. Zbl0806.35129MR1258192
  4. [4] Birindelli I., Hopf's lemma and anti-maximum principle in general domains, J. Differential Equations119 (2) (1995) 450-472. Zbl0831.35114MR1340547
  5. [5] Chow S.-N., Lu K., Mallet-Paret J., Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal.129 (1995) 245-304. Zbl0822.35057MR1328478
  6. [6] Daners D., Dirichlet problems on varying domains, J. Differential Equations188 (2003) 591-624. Zbl1090.35069MR1955096
  7. [7] Daners D., Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations129 (1996) 358-402. Zbl0868.35059MR1404388
  8. [8] Daners D., Existence and perturbation of principal eigenvalues for a periodic-parabolic problem, Electron. J. Differential Equations, Conf.05 (2000) 51-67. Zbl1055.35056MR1799044
  9. [9] Daners D., Heat kernel estimates for operators with boundary conditions, Math. Nachr.217 (2000) 13-41. Zbl0973.35087MR1780769
  10. [10] Evans L.C., Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
  11. [11] Fabes E.B., Garofalo N., Salsa S., A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math.30 (1986) 536-565. Zbl0625.35006MR857210
  12. [12] Fabes E.B., Safonov M.V., Behavior near the boundary of positive solutions of second order parabolic equations, J. Fourier Anal. Appl.3 (1997) 871-882. Zbl0939.35082MR1600211
  13. [13] Fabes E.B., Safonov M.V., Yuan Y., Behavior near the boundary of positive solutions of second order parabolic equations II, Trans. Amer. Math. Soc.12 (1999) 4947-4961. Zbl0976.35031MR1665328
  14. [14] Ferretti E., Safonov M.V., Growth theorems and Harnack inequality for second order parabolic equations, in: Harmonic Analysis and Boundary Value Problems, Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 87-112. Zbl1009.35013MR1840429
  15. [15] Garofalo N., Second order parabolic equations in nonvariational form: boundary Harnack principle and comparison theorems for nonnegative solutions, Ann. Mat. Pura Appl.138 (1984) 267-296. Zbl0574.35039MR779547
  16. [16] Henry P., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer, New York, 1981. Zbl0456.35001MR610244
  17. [17] Hess P., Periodic-Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, 1991. Zbl0731.35050MR1100011
  18. [18] Hess P., Poláčik P., Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems, SIAM J. Math. Anal.24 (1993) 1312-1330. Zbl0797.58077MR1234018
  19. [19] Húska J., Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Differential Equations226 (2006) 541-557. Zbl1102.35027MR2237690
  20. [20] Húska J., Poláčik P., The principal Floquet bundle and exponential separation for linear parabolic equations, J. Dynam. Differential Equations24 (2004) 1312-1330. Zbl1128.35353MR2105779
  21. [21] J. Húska, P. Poláčik, M.V. Safonov, Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations, in: Disc. Cont. Dynamical Systems, Supplement, Proceedings of the 5th International Conference on Dynamical Systems and Differential Equations, Pomona 2004, 2005, pp. 427–435. Zbl1152.35391
  22. [22] Hutson V., Shen W., Vickers G.T., Estimates for the principal spectrum point for certain time-dependent parabolic operators, Proc. Amer. Math. Soc.129 (6) (2001) 1669-1679, (electronic). Zbl0963.35074MR1814096
  23. [23] Krylov N.V., Safonov M.V., A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat.44 (1) (1980) 161-175. Zbl0439.35023MR563790
  24. [24] Ladyzhenskaya O.A., Solonnikov V.A., Uralceva N.N., Linear and Quasilinear Equations of Parabolic Type, Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403
  25. [25] Landis E.M., Second Order Equations of Elliptic and Parabolic Type, Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1998. Zbl0895.35001MR1487894
  26. [26] Lieberman G.M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Zbl0884.35001MR1465184
  27. [27] J. Mierczyński, Flows on order bundles, unpublished. 
  28. [28] Mierczyński J., p-arcs in strongly monotone discrete-time dynamical systems, Differential Integral Equations7 (1994) 1473-1494. Zbl0864.58054MR1269666
  29. [29] Mierczyński J., Globally positive solutions of linear PDEs of second order with Robin boundary conditions, J. Math. Anal. Appl.209 (1997) 47-59. Zbl0877.35052MR1444510
  30. [30] Mierczyński J., Globally positive solutions of linear parabolic partial differential equations of second order with Dirichlet boundary conditions, J. Math. Anal. Appl.226 (1998) 326-347. Zbl0921.35064MR1650236
  31. [31] Mierczyński J., The principal spectrum for linear nonautonomous parabolic pdes of second order: Basic properties, J. Differential Equations168 (2000) 453-476. Zbl0982.35079MR1808456
  32. [32] Mierczyński J., Shen W., Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations, J. Differential Equations191 (2003) 175-205. Zbl1024.35091MR1973287
  33. [33] Moser J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964) 101-134, Correction in, Comm. Pure Appl. Math.20 (1967) 231-236. Zbl0149.07001MR159139
  34. [34] Nishio M., The uniqueness of positive solutions of parabolic equations of divergence form on an unbounded domain, Nagoya Math. J.130 (1993) 111-121. Zbl0774.31006MR1223732
  35. [35] Poláčik P., Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Fiedler B. (Ed.), Handbook on Dynamical Systems, vol. 2, Elsevier, Amsterdam, 2002, pp. 835-883. Zbl1002.35001MR1901067
  36. [36] Poláčik P., On uniqueness of positive entire solutions and other properties of linear parabolic equations, Discrete Contin. Dynamical Systems12 (2005) 13-26. Zbl1067.35030MR2121246
  37. [37] Poláčik P., Tereščák I., Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems, Arch. Rational Mech. Anal.116 (1992) 339-360. Zbl0755.58039MR1132766
  38. [38] Poláčik P., Tereščák I., Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Differential Equations5 (1993) 279-303, Erratum, J. Dynamics Differential Equations6 (1) (1994) 245-246. Zbl0791.58008MR1223450
  39. [39] Ruelle D., Analycity properties of the characteristic exponents of random matrix products, Adv. in Math.32 (1979) 68-80. Zbl0426.58018MR534172
  40. [40] Shen W., Yi Y., Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc.647 (1998) 93. Zbl0913.58051MR1445493
  41. [41] I. Tereščák, Dynamics of C 1 smooth strongly monotone discrete-time dynamical systems, Preprint. 
  42. [42] I. Tereščák, Dynamical systems with discrete Lyapunov functionals, PhD thesis, Comenius University, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.