Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations
Juraj Húska; Peter Poláčik; Mikhail V. Safonov
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 5, page 711-739
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHúska, Juraj, Poláčik, Peter, and Safonov, Mikhail V.. "Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 711-739. <http://eudml.org/doc/78756>.
@article{Húska2007,
author = {Húska, Juraj, Poláčik, Peter, Safonov, Mikhail V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {positive entire solutions; robustness; Dirichlet problem},
language = {eng},
number = {5},
pages = {711-739},
publisher = {Elsevier},
title = {Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations},
url = {http://eudml.org/doc/78756},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Húska, Juraj
AU - Poláčik, Peter
AU - Safonov, Mikhail V.
TI - Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 711
EP - 739
LA - eng
KW - positive entire solutions; robustness; Dirichlet problem
UR - http://eudml.org/doc/78756
ER -
References
top- [1] Aronson D.G., Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa22 (1968) 607-694. Zbl0182.13802MR435594
- [2] Arrieta J.M., Elliptic equations, principal eigenvalue and dependence on the domain, Comm. Partial Differential Equations21 (1996) 971-991. Zbl0857.35092MR1391529
- [3] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1994) 47-92. Zbl0806.35129MR1258192
- [4] Birindelli I., Hopf's lemma and anti-maximum principle in general domains, J. Differential Equations119 (2) (1995) 450-472. Zbl0831.35114MR1340547
- [5] Chow S.-N., Lu K., Mallet-Paret J., Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal.129 (1995) 245-304. Zbl0822.35057MR1328478
- [6] Daners D., Dirichlet problems on varying domains, J. Differential Equations188 (2003) 591-624. Zbl1090.35069MR1955096
- [7] Daners D., Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations129 (1996) 358-402. Zbl0868.35059MR1404388
- [8] Daners D., Existence and perturbation of principal eigenvalues for a periodic-parabolic problem, Electron. J. Differential Equations, Conf.05 (2000) 51-67. Zbl1055.35056MR1799044
- [9] Daners D., Heat kernel estimates for operators with boundary conditions, Math. Nachr.217 (2000) 13-41. Zbl0973.35087MR1780769
- [10] Evans L.C., Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
- [11] Fabes E.B., Garofalo N., Salsa S., A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math.30 (1986) 536-565. Zbl0625.35006MR857210
- [12] Fabes E.B., Safonov M.V., Behavior near the boundary of positive solutions of second order parabolic equations, J. Fourier Anal. Appl.3 (1997) 871-882. Zbl0939.35082MR1600211
- [13] Fabes E.B., Safonov M.V., Yuan Y., Behavior near the boundary of positive solutions of second order parabolic equations II, Trans. Amer. Math. Soc.12 (1999) 4947-4961. Zbl0976.35031MR1665328
- [14] Ferretti E., Safonov M.V., Growth theorems and Harnack inequality for second order parabolic equations, in: Harmonic Analysis and Boundary Value Problems, Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 87-112. Zbl1009.35013MR1840429
- [15] Garofalo N., Second order parabolic equations in nonvariational form: boundary Harnack principle and comparison theorems for nonnegative solutions, Ann. Mat. Pura Appl.138 (1984) 267-296. Zbl0574.35039MR779547
- [16] Henry P., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer, New York, 1981. Zbl0456.35001MR610244
- [17] Hess P., Periodic-Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, 1991. Zbl0731.35050MR1100011
- [18] Hess P., Poláčik P., Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems, SIAM J. Math. Anal.24 (1993) 1312-1330. Zbl0797.58077MR1234018
- [19] Húska J., Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Differential Equations226 (2006) 541-557. Zbl1102.35027MR2237690
- [20] Húska J., Poláčik P., The principal Floquet bundle and exponential separation for linear parabolic equations, J. Dynam. Differential Equations24 (2004) 1312-1330. Zbl1128.35353MR2105779
- [21] J. Húska, P. Poláčik, M.V. Safonov, Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations, in: Disc. Cont. Dynamical Systems, Supplement, Proceedings of the 5th International Conference on Dynamical Systems and Differential Equations, Pomona 2004, 2005, pp. 427–435. Zbl1152.35391
- [22] Hutson V., Shen W., Vickers G.T., Estimates for the principal spectrum point for certain time-dependent parabolic operators, Proc. Amer. Math. Soc.129 (6) (2001) 1669-1679, (electronic). Zbl0963.35074MR1814096
- [23] Krylov N.V., Safonov M.V., A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat.44 (1) (1980) 161-175. Zbl0439.35023MR563790
- [24] Ladyzhenskaya O.A., Solonnikov V.A., Uralceva N.N., Linear and Quasilinear Equations of Parabolic Type, Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403
- [25] Landis E.M., Second Order Equations of Elliptic and Parabolic Type, Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1998. Zbl0895.35001MR1487894
- [26] Lieberman G.M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Zbl0884.35001MR1465184
- [27] J. Mierczyński, Flows on order bundles, unpublished.
- [28] Mierczyński J., p-arcs in strongly monotone discrete-time dynamical systems, Differential Integral Equations7 (1994) 1473-1494. Zbl0864.58054MR1269666
- [29] Mierczyński J., Globally positive solutions of linear PDEs of second order with Robin boundary conditions, J. Math. Anal. Appl.209 (1997) 47-59. Zbl0877.35052MR1444510
- [30] Mierczyński J., Globally positive solutions of linear parabolic partial differential equations of second order with Dirichlet boundary conditions, J. Math. Anal. Appl.226 (1998) 326-347. Zbl0921.35064MR1650236
- [31] Mierczyński J., The principal spectrum for linear nonautonomous parabolic pdes of second order: Basic properties, J. Differential Equations168 (2000) 453-476. Zbl0982.35079MR1808456
- [32] Mierczyński J., Shen W., Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations, J. Differential Equations191 (2003) 175-205. Zbl1024.35091MR1973287
- [33] Moser J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964) 101-134, Correction in, Comm. Pure Appl. Math.20 (1967) 231-236. Zbl0149.07001MR159139
- [34] Nishio M., The uniqueness of positive solutions of parabolic equations of divergence form on an unbounded domain, Nagoya Math. J.130 (1993) 111-121. Zbl0774.31006MR1223732
- [35] Poláčik P., Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Fiedler B. (Ed.), Handbook on Dynamical Systems, vol. 2, Elsevier, Amsterdam, 2002, pp. 835-883. Zbl1002.35001MR1901067
- [36] Poláčik P., On uniqueness of positive entire solutions and other properties of linear parabolic equations, Discrete Contin. Dynamical Systems12 (2005) 13-26. Zbl1067.35030MR2121246
- [37] Poláčik P., Tereščák I., Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems, Arch. Rational Mech. Anal.116 (1992) 339-360. Zbl0755.58039MR1132766
- [38] Poláčik P., Tereščák I., Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Differential Equations5 (1993) 279-303, Erratum, J. Dynamics Differential Equations6 (1) (1994) 245-246. Zbl0791.58008MR1223450
- [39] Ruelle D., Analycity properties of the characteristic exponents of random matrix products, Adv. in Math.32 (1979) 68-80. Zbl0426.58018MR534172
- [40] Shen W., Yi Y., Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc.647 (1998) 93. Zbl0913.58051MR1445493
- [41] I. Tereščák, Dynamics of smooth strongly monotone discrete-time dynamical systems, Preprint.
- [42] I. Tereščák, Dynamical systems with discrete Lyapunov functionals, PhD thesis, Comenius University, 1994.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.