Extremal functions for the anisotropic Sobolev inequalities

A. El Hamidi; J. M. Rakotoson

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 5, page 741-756
  • ISSN: 0294-1449

How to cite

top

El Hamidi, A., and Rakotoson, J. M.. "Extremal functions for the anisotropic Sobolev inequalities." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 741-756. <http://eudml.org/doc/78757>.

@article{ElHamidi2007,
author = {El Hamidi, A., Rakotoson, J. M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasilinear problems; concentration-compactness; anisotropic Sobolev inequalities},
language = {eng},
number = {5},
pages = {741-756},
publisher = {Elsevier},
title = {Extremal functions for the anisotropic Sobolev inequalities},
url = {http://eudml.org/doc/78757},
volume = {24},
year = {2007},
}

TY - JOUR
AU - El Hamidi, A.
AU - Rakotoson, J. M.
TI - Extremal functions for the anisotropic Sobolev inequalities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 741
EP - 756
LA - eng
KW - quasilinear problems; concentration-compactness; anisotropic Sobolev inequalities
UR - http://eudml.org/doc/78757
ER -

References

top
  1. [1] Aubin T., Problèmes isopérimètriques et espaces de Sobolev, J. Differential Geometry11 (4) (1976) 573-598. Zbl0371.46011MR448404
  2. [2] Brezis H., Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
  3. [3] El Hamidi A., Rakotoson J.M., Compactness and quasilinear problems with critical exponents, Differential Integral Equations18 (2005) 1201-1220. Zbl1212.35113MR2174817
  4. [4] Fragala I., Gazzola F., Kawohl B., Existence and nonexistence results for anisotropic quasilinear elliptic equation, Ann. I. H. Poincaré Anal. Non Lineairé21 (2004) 715-734. Zbl1144.35378MR2086756
  5. [5] Lions P.L., The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana1 (1) (1985) 145-201. Zbl0704.49005MR834360
  6. [6] Nikol'skii S.M., On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surveys16 (1961) 55-104. Zbl0117.29101MR149267
  7. [7] Rakosnik J., Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis13 (1979) 55-68. Zbl0399.46025MR536217
  8. [8] Rakosnik J., Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis15 (1981) 127-140. Zbl0494.46034MR614784
  9. [9] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (4) (1976) 353-372. Zbl0353.46018MR463908
  10. [10] Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat.18 (1969) 3-24. Zbl0182.16802MR415302
  11. [11] Ven'-tuan L., On embedding theorems for spaces of functions with partial derivatives of various degrees of summability, Vestnik Leningrad Univ.16 (1961) 23-37, (in Russian). Zbl0100.31803MR143020
  12. [12] Willem M., Minimax Theorems, Birkhäuser, 1996. Zbl0856.49001MR1400007
  13. [13] Yamabe H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J.12 (1960) 21-37. Zbl0096.37201MR125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.