Lignes de divergence pour les graphes à courbure moyenne constante

Laurent Mazet

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 5, page 757-771
  • ISSN: 0294-1449

How to cite

top

Mazet, Laurent. "Lignes de divergence pour les graphes à courbure moyenne constante." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 757-771. <http://eudml.org/doc/78758>.

@article{Mazet2007,
author = {Mazet, Laurent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mean curvature},
language = {fre},
number = {5},
pages = {757-771},
publisher = {Elsevier},
title = {Lignes de divergence pour les graphes à courbure moyenne constante},
url = {http://eudml.org/doc/78758},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Mazet, Laurent
TI - Lignes de divergence pour les graphes à courbure moyenne constante
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 757
EP - 771
LA - fre
KW - mean curvature
UR - http://eudml.org/doc/78758
ER -

References

top
  1. [1] Collin P., Krust R., Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés, Bull. Soc. Math. France119 (1991) 443-462. Zbl0754.53013MR1136846
  2. [2] Finn R., The Gauss curvature of an H-graph, Nachr. Akad. Wiss. Göttingen2 (1987). Zbl0645.53003MR919511
  3. [3] Hélein F., Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2001. Zbl1158.53301MR1844305
  4. [4] Jenkins H., Serrin J., Variational problems of minimal surface type II, Arch. Rational Mech. Anal.21 (1966) 321-342. Zbl0171.08301MR190811
  5. [5] L. Mazet, Some uniqueness results for constant mean curvature graphs, Pacific J. Math., in press. Zbl1154.53008MR2309165
  6. [6] L. Mazet, Construction de surfaces minimales par résolution du problème de Dirichlet, Thèse de Doctorat, Univ. Toulouse III, 2004. 
  7. [7] Mazet L., The Dirichlet problem for the minimal surfaces equation and the Plateau problem at infinity, J. Inst. Math. Jussieu3 (2004) 397-420. Zbl1063.53007MR2074430
  8. [8] Meeks W.H., Ros A., Rosenberg H., The Global Theory of Minimal Surfaces in Flat Spaces, Lecture Notes in Mathematics, vol. 1775, Springer-Verlag, Berlin, 2002. 
  9. [9] Serrin J., The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc. (3)21 (1970) 361-384. Zbl0199.16604MR275336
  10. [10] Serrin J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A264 (1969) 413-496. Zbl0181.38003MR282058
  11. [11] Spruck J., Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal.49 (1972/73) 1-31. Zbl0263.53008MR334010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.