Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés

P. Collin; R. Krust

Bulletin de la Société Mathématique de France (1991)

  • Volume: 119, Issue: 4, page 443-462
  • ISSN: 0037-9484

How to cite

top

Collin, P., and Krust, R.. "Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés." Bulletin de la Société Mathématique de France 119.4 (1991): 443-462. <http://eudml.org/doc/87632>.

@article{Collin1991,
author = {Collin, P., Krust, R.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {minimal surfaces; Dirichlet problem; Schwartz theorem},
language = {fre},
number = {4},
pages = {443-462},
publisher = {Société mathématique de France},
title = {Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés},
url = {http://eudml.org/doc/87632},
volume = {119},
year = {1991},
}

TY - JOUR
AU - Collin, P.
AU - Krust, R.
TI - Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 4
SP - 443
EP - 462
LA - fre
KW - minimal surfaces; Dirichlet problem; Schwartz theorem
UR - http://eudml.org/doc/87632
ER -

References

top
  1. [1] COLLIN (P.). — Compléments sur les graphes de courbure moyenne constante, à paraître. 
  2. [2] GILBARG (D.) and TRUDINGER (N.S.). — Elliptic partial differential equations of second order, Springer Verlag 1983. Zbl0562.35001MR86c:35035
  3. [3] HWANG (J.F.). — Comparison principles and Liouville theorems for prescribed mean curvature equation in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), t. 15, 1988, p. 341-355. Zbl0705.49022MR90m:35019
  4. [4] JENKINS (H.) and SERRIN (J.). — Variational problems of minimal surfaces type, II. Boundary value problem for the minimal surface equation, Arch. Rational Mech. Anal., t. 21, 1963, p. 321-342. Zbl0171.08301
  5. [5] KRUST (R.). — Remarques sur le problème extérieur de Plateau, Duke Math. J., t. 59, 1989, p. 161-173. Zbl0709.49022MR90i:49050
  6. [6] LANGEVIN (R.), LEVITT (G.) and ROSENBERG (H.). — Complete minimal surfaces with long line boundaries, Duke Math. J., t. 55, 4, 1987, p. 1-11. Zbl0637.53007MR89h:53022
  7. [7] LANGEVIN (R.) and ROSENBERG (H.). — A maximal principle at infinity for minimal surfaces and applications, à paraître dans Duke Math., J., t. 57, 1988, p. 819-828. Zbl0667.49024MR90c:53025
  8. [8] BLAINE LAWSON (H.). — Lectures on minimal submanifolds, Vol. 1, Math. Lecture Series 9, Publish or Perish. Zbl0434.53006
  9. [9] OSSERMAN (R.). — A survey of minimal surfaces, Van Nostrand Reinhold Math. Studies 25, 1969. Zbl0209.52901MR41 #934
  10. [10] PROTTER (M.) and WEINBERGER (H.). — Maximum principles in differential equations. — Prentice Hall, 1967. Zbl0153.13602MR36 #2935
  11. [11] SA EARP (R.) and ROSENBERG (H.). — The Dirichlet problem for the minimal surface equation on unbounded planar domains, J. Math. Pures Appl., t. 68, 1989, p. 163-183. Zbl0696.49069MR90m:35072
  12. [12] SERRIN (J.). — A priori estimates for solutions of the minimal surface equation, Arch. Rationnal Mech. Anal., t. 14, 1963, p. 376-383. Zbl0117.07304MR28 #1386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.