Nonlinear evolution PDEs in : existence and uniqueness of solutions, asymptotic and Borel summability properties
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 5, page 795-823
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCostin, O., and Tanveer, S.. "Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 795-823. <http://eudml.org/doc/78760>.
@article{Costin2007,
author = {Costin, O., Tanveer, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {sectorial existence for nonlinear PDEs; asymptotic behavior; Borel summability},
language = {eng},
number = {5},
pages = {795-823},
publisher = {Elsevier},
title = {Nonlinear evolution PDEs in $\{R\}^\{+\}\times \{C\}^\{d\}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties},
url = {http://eudml.org/doc/78760},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Costin, O.
AU - Tanveer, S.
TI - Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 795
EP - 823
LA - eng
KW - sectorial existence for nonlinear PDEs; asymptotic behavior; Borel summability
UR - http://eudml.org/doc/78760
ER -
References
top- [1] Balser W., From Divergent Power Series to Analytic Functions, Springer-Verlag, Berlin, 1994. Zbl0810.34046MR1317343
- [2] W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, preprint. Zbl1052.35048MR2057538
- [3] Balser W., Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke, Pacific J. Math.188 (1) (1999) 53-63. Zbl0960.35045MR1680415
- [4] Bender C., Orszag S., Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978, Springer-Verlag, 1999. Zbl0417.34001MR538168
- [5] Costin O., On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J.93 (2) (1998) 289. Zbl0948.34068MR1625999
- [6] Costin O., Costin R.D., On the formation of singularities of solutions of nonlinear differential systems in antistokes directions, Invent. Math.45 (3) (2001) 425-485. Zbl1034.34102MR1856397
- [7] Costin O., Tanveer S., Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure Appl. Math.LIII (2000) 1092-1117. Zbl1069.35003MR1761410
- [8] Costin O., Topological construction of transseries and introduction to generalized Borel summability, in: Analyzable Functions and Applications, Contemp. Math., vol. 373, Amer. Math. Soc., Providence, RI, 2005, pp. 137-175. Zbl1072.40004MR2130829
- [9] O. Costin, S. Tanveer, Complex singularity analysis for a nonlinear PDE, Comm. PDE, in press. Zbl1136.35332
- [10] Écalle J., Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series, vol. 408, 1993.
- [11] Écalle J., Fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992. MR1399559
- [12] Lutz D.A., Miyake M., Schäfke R., On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J.154 (1999) 1. Zbl0958.35061MR1689170
- [13] Sammartino M., Caflisch R.E., Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys.192 (1998) 433-461. Zbl0913.35102
- [14] Sammartino M., Caflisch R.E., Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution, Comm. Math. Phys.192 (1998) 463. Zbl0913.35103
- [15] Tanveer S., Evolution of Hele–Shaw interface for small surface tension, Philos. Trans. Roy. Soc. London A343 (1993) 155. Zbl0778.76029
- [16] Treves F., Basic Linear Partial Differential Equations, Academic Press, 1975. Zbl0305.35001MR447753
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.