Nonlinear evolution PDEs in R + × C d : existence and uniqueness of solutions, asymptotic and Borel summability properties

O. Costin; S. Tanveer

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 5, page 795-823
  • ISSN: 0294-1449

How to cite

top

Costin, O., and Tanveer, S.. "Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 795-823. <http://eudml.org/doc/78760>.

@article{Costin2007,
author = {Costin, O., Tanveer, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {sectorial existence for nonlinear PDEs; asymptotic behavior; Borel summability},
language = {eng},
number = {5},
pages = {795-823},
publisher = {Elsevier},
title = {Nonlinear evolution PDEs in $\{R\}^\{+\}\times \{C\}^\{d\}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties},
url = {http://eudml.org/doc/78760},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Costin, O.
AU - Tanveer, S.
TI - Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 795
EP - 823
LA - eng
KW - sectorial existence for nonlinear PDEs; asymptotic behavior; Borel summability
UR - http://eudml.org/doc/78760
ER -

References

top
  1. [1] Balser W., From Divergent Power Series to Analytic Functions, Springer-Verlag, Berlin, 1994. Zbl0810.34046MR1317343
  2. [2] W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, preprint. Zbl1052.35048MR2057538
  3. [3] Balser W., Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke, Pacific J. Math.188 (1) (1999) 53-63. Zbl0960.35045MR1680415
  4. [4] Bender C., Orszag S., Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978, Springer-Verlag, 1999. Zbl0417.34001MR538168
  5. [5] Costin O., On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J.93 (2) (1998) 289. Zbl0948.34068MR1625999
  6. [6] Costin O., Costin R.D., On the formation of singularities of solutions of nonlinear differential systems in antistokes directions, Invent. Math.45 (3) (2001) 425-485. Zbl1034.34102MR1856397
  7. [7] Costin O., Tanveer S., Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure Appl. Math.LIII (2000) 1092-1117. Zbl1069.35003MR1761410
  8. [8] Costin O., Topological construction of transseries and introduction to generalized Borel summability, in: Analyzable Functions and Applications, Contemp. Math., vol. 373, Amer. Math. Soc., Providence, RI, 2005, pp. 137-175. Zbl1072.40004MR2130829
  9. [9] O. Costin, S. Tanveer, Complex singularity analysis for a nonlinear PDE, Comm. PDE, in press. Zbl1136.35332
  10. [10] Écalle J., Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series, vol. 408, 1993. 
  11. [11] Écalle J., Fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992. MR1399559
  12. [12] Lutz D.A., Miyake M., Schäfke R., On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J.154 (1999) 1. Zbl0958.35061MR1689170
  13. [13] Sammartino M., Caflisch R.E., Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys.192 (1998) 433-461. Zbl0913.35102
  14. [14] Sammartino M., Caflisch R.E., Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution, Comm. Math. Phys.192 (1998) 463. Zbl0913.35103
  15. [15] Tanveer S., Evolution of Hele–Shaw interface for small surface tension, Philos. Trans. Roy. Soc. London A343 (1993) 155. Zbl0778.76029
  16. [16] Treves F., Basic Linear Partial Differential Equations, Academic Press, 1975. Zbl0305.35001MR447753

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.