Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results

B. Baji; A. Cabot; J. I. Díaz

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 1009-1028
  • ISSN: 0294-1449

How to cite

top

Baji, B., Cabot, A., and Díaz, J. I.. "Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 1009-1028. <http://eudml.org/doc/78764>.

@article{Baji2007,
author = {Baji, B., Cabot, A., Díaz, J. I.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dry friction; differential inclusion; finite time extinction; Dirichlet boundary condition},
language = {eng},
number = {6},
pages = {1009-1028},
publisher = {Elsevier},
title = {Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results},
url = {http://eudml.org/doc/78764},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Baji, B.
AU - Cabot, A.
AU - Díaz, J. I.
TI - Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 1009
EP - 1028
LA - eng
KW - dry friction; differential inclusion; finite time extinction; Dirichlet boundary condition
UR - http://eudml.org/doc/78764
ER -

References

top
  1. [1] Adly S., Attouch H., Cabot A., Finite time stabilization of nonlinear oscillators subject to dry friction, in: Alart P., Maisonneuve O., Rockafellar R.T. (Eds.), Progresses in Nonsmooth Mechanics and Analysis, Advances in Mathematics and Mechanics, Kluwer, 2006, pp. 289-304. MR2205459
  2. [2] Baji B., Cabot A., An inertial proximal algorithm with dry friction: finite convergence results, Set Valued Anal.14 (1) (2006) 1-23. Zbl1102.65063MR2232455
  3. [3] Bamberger A., Cabannes H., Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. I Math.292 (1981) 699-702. Zbl0457.73041MR618890
  4. [4] Barbu V., Precupanu T., Convexity and Optimization in Banach Spaces, second ed., D. Reidel, Dordrecht, 1986. Zbl0594.49001MR860772
  5. [5] Bogolioubov N., Mitropolski I., Les méthodes asymptotiques en théorie des oscillations non linéaires, Gauthier-Villars, Paris, 1962. Zbl0247.34004MR158129
  6. [6] Brézis H., Problèmes unilatéraux, J. Math. Pures Appl.51 (1972) 1-168. Zbl0237.35001MR428137
  7. [7] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  8. [8] Brogliato B., Nonsmooth Mechanics, second ed., Springer CCES, London, 1999. Zbl0917.73002
  9. [9] Cabannes H., Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. A-B287 (1978) 671-673. Zbl0393.70022MR514553
  10. [10] Cabannes H., Study of motions of a vibrating string subject to solid friction, Math. Methods Appl. Sci.3 (1981) 287-300. Zbl0474.73073MR657297
  11. [11] A. Cabot, Stabilization of oscillators subject to dry friction: finite time convergence versus exponential decay results, Trans. Amer. Math. Soc., in press. Zbl1133.34008MR2341995
  12. [12] Cazenave T., Haraux A., An introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, 1998. Zbl0926.35049MR1691574
  13. [13] Dafermos C.M., Slemrod M., Asymptotic behavior of non linear contraction semi-groups, J. Funct. Anal.12 (1973) 97-106. Zbl0267.34062MR346611
  14. [14] J.I. Díaz, V. Millot, Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators, in: XVIII CEDYA: Congress on Differential Equations and Applications/VIII CMA: Congress on Applied Mathematics, Tarragona, 2003. 
  15. [15] Hale J.K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, Amer. Math. Soc., Providence, RI, 1988. Zbl0642.58013MR941371
  16. [16] A. Haraux, Opérateurs maximaux monotones et oscillations forcées non linéaires, Thèse, Université Pierre et Marie Curie, Paris, 1978. 
  17. [17] Haraux A., Comportement à l'infini pour certains systèmes dissipatifs non linéaires, Proc. Roy. Soc. Edinburgh Sect. A84 (1979) 213-234. Zbl0429.35013MR559667
  18. [18] Haraux A., Nonlinear Evolution Equations. Global Behavior of Solutions, Lecture Notes in Mathematics, vol. 841, Springer-Verlag, New York, 1981. Zbl0461.35002MR610796
  19. [19] Haraux A., Systèmes dynamiques dissipatifs et applications, RMA, vol. 17, Masson, Paris, 1991. Zbl0726.58001MR1084372
  20. [20] Panagiotopoulos P.D., Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985. Zbl0579.73014MR896909
  21. [21] Rockafellar R.T., Wets R., Variational Analysis, Springer, Berlin, 1998. Zbl0888.49001MR1491362
  22. [22] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.