Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 6, page 1009-1028
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBaji, B., Cabot, A., and Díaz, J. I.. "Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 1009-1028. <http://eudml.org/doc/78764>.
@article{Baji2007,
author = {Baji, B., Cabot, A., Díaz, J. I.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dry friction; differential inclusion; finite time extinction; Dirichlet boundary condition},
language = {eng},
number = {6},
pages = {1009-1028},
publisher = {Elsevier},
title = {Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results},
url = {http://eudml.org/doc/78764},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Baji, B.
AU - Cabot, A.
AU - Díaz, J. I.
TI - Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 1009
EP - 1028
LA - eng
KW - dry friction; differential inclusion; finite time extinction; Dirichlet boundary condition
UR - http://eudml.org/doc/78764
ER -
References
top- [1] Adly S., Attouch H., Cabot A., Finite time stabilization of nonlinear oscillators subject to dry friction, in: Alart P., Maisonneuve O., Rockafellar R.T. (Eds.), Progresses in Nonsmooth Mechanics and Analysis, Advances in Mathematics and Mechanics, Kluwer, 2006, pp. 289-304. MR2205459
- [2] Baji B., Cabot A., An inertial proximal algorithm with dry friction: finite convergence results, Set Valued Anal.14 (1) (2006) 1-23. Zbl1102.65063MR2232455
- [3] Bamberger A., Cabannes H., Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. I Math.292 (1981) 699-702. Zbl0457.73041MR618890
- [4] Barbu V., Precupanu T., Convexity and Optimization in Banach Spaces, second ed., D. Reidel, Dordrecht, 1986. Zbl0594.49001MR860772
- [5] Bogolioubov N., Mitropolski I., Les méthodes asymptotiques en théorie des oscillations non linéaires, Gauthier-Villars, Paris, 1962. Zbl0247.34004MR158129
- [6] Brézis H., Problèmes unilatéraux, J. Math. Pures Appl.51 (1972) 1-168. Zbl0237.35001MR428137
- [7] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- [8] Brogliato B., Nonsmooth Mechanics, second ed., Springer CCES, London, 1999. Zbl0917.73002
- [9] Cabannes H., Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. A-B287 (1978) 671-673. Zbl0393.70022MR514553
- [10] Cabannes H., Study of motions of a vibrating string subject to solid friction, Math. Methods Appl. Sci.3 (1981) 287-300. Zbl0474.73073MR657297
- [11] A. Cabot, Stabilization of oscillators subject to dry friction: finite time convergence versus exponential decay results, Trans. Amer. Math. Soc., in press. Zbl1133.34008MR2341995
- [12] Cazenave T., Haraux A., An introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, 1998. Zbl0926.35049MR1691574
- [13] Dafermos C.M., Slemrod M., Asymptotic behavior of non linear contraction semi-groups, J. Funct. Anal.12 (1973) 97-106. Zbl0267.34062MR346611
- [14] J.I. Díaz, V. Millot, Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators, in: XVIII CEDYA: Congress on Differential Equations and Applications/VIII CMA: Congress on Applied Mathematics, Tarragona, 2003.
- [15] Hale J.K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, Amer. Math. Soc., Providence, RI, 1988. Zbl0642.58013MR941371
- [16] A. Haraux, Opérateurs maximaux monotones et oscillations forcées non linéaires, Thèse, Université Pierre et Marie Curie, Paris, 1978.
- [17] Haraux A., Comportement à l'infini pour certains systèmes dissipatifs non linéaires, Proc. Roy. Soc. Edinburgh Sect. A84 (1979) 213-234. Zbl0429.35013MR559667
- [18] Haraux A., Nonlinear Evolution Equations. Global Behavior of Solutions, Lecture Notes in Mathematics, vol. 841, Springer-Verlag, New York, 1981. Zbl0461.35002MR610796
- [19] Haraux A., Systèmes dynamiques dissipatifs et applications, RMA, vol. 17, Masson, Paris, 1991. Zbl0726.58001MR1084372
- [20] Panagiotopoulos P.D., Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985. Zbl0579.73014MR896909
- [21] Rockafellar R.T., Wets R., Variational Analysis, Springer, Berlin, 1998. Zbl0888.49001MR1491362
- [22] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.