Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 6, page 921-951
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRaymond, J.-P.. "Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 921-951. <http://eudml.org/doc/78770>.
@article{Raymond2007,
author = {Raymond, J.-P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; Stokes equations; Oseen equations; nonhomogeneous boundary conditions; regularity},
language = {eng},
number = {6},
pages = {921-951},
publisher = {Elsevier},
title = {Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions},
url = {http://eudml.org/doc/78770},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Raymond, J.-P.
TI - Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 921
EP - 951
LA - eng
KW - Navier-Stokes equations; Stokes equations; Oseen equations; nonhomogeneous boundary conditions; regularity
UR - http://eudml.org/doc/78770
ER -
References
top- [1] Amann H., Nonhomogeneous Navier–Stokes equations with integrable low-regularity data, in: Birman, (Eds.), Nonlinear Problems in Mathematical Physics and Related Topics II, Kluwer Academic/Plenum Publishers, New York, 2002, pp. 1-28. Zbl1201.76038
- [2] Amann H., Navier–Stokes equations with nonhomogeneous Dirichlet boundary conditions, J. Nonlinear Math. Phys.10 (Suppl. 1) (2003) 1-11.
- [3] V. Barbu, I. Lasiecka, R. Triggiani, Tangential boundary stabilization of Navier–Stokes equations, Mem. Amer. Math. Soc. (2006), in press. Zbl1098.35026
- [4] Bensoussan A., Da Prato G., Delfour M.C., Mitter S.K., Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser, 1992. Zbl0781.93002MR1182557
- [5] Bensoussan A., Da Prato G., Delfour M.C., Mitter S.K., Representation and Control of Infinite Dimensional Systems, vol. 2, Birkhäuser, 1993. Zbl0790.93016
- [6] Dautray R., Lions J.-L., Analyse Mathématique et Calcul Numérique, vol. 8, Masson, Paris, 1988. Zbl0652.45001
- [7] R. Farwig, G.P. Galdi, H. Sohr, A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data, J. Math. Fluid Mech., published on line 27 October 2005. Zbl1104.35032
- [8] Fursikov A.V., Gunzburger M.D., Hou L.S., Trace theorems for three-dimensional time-dependent solenoidal vector fields and their applications, Trans. Amer. Math. Soc.354 (2001) 1079-1116. Zbl0988.46024MR1867373
- [9] Fursikov A.V., Gunzburger M.D., Hou L.S., Inhomogeneous boundary value problems for the three-dimensional evolutionary Navier–Stokes equations, J. Math. Fluid Mech.4 (2002) 45-75. Zbl0991.35064
- [10] Galdi G.P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. 1, Springer-Verlag, 1994. Zbl0949.35004
- [11] Galdi G.P., Simader C.G., Sohr H., A class of solutions to the stationary Stokes and Navier–Stokes equations with boundary data in , Math. Ann.331 (2005) 41-74. Zbl1064.35133
- [12] Grisvard P., Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl.45 (1966) 143-206, and 207–290. Zbl0187.05803
- [13] Grubb G., Solonnikov V.A., Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods, Math. Scand.69 (1991) 217-290. Zbl0766.35034
- [14] Grubb G., Nonhomogeneous Dirichlet Navier–Stokes problems in low regularity Sobolev spaces, J. Math. Fluid Mech.3 (2001) 57-81. Zbl0992.35065
- [15] He J.-W., Glowinski R., Metcalfe R., Nordlander A., Periaux J., Active control and drag optimization for flow past a circular cylinder, J. Comp. Phys.163 (2000) 83-117. Zbl0977.76021MR1777723
- [16] Lasiecka I., Triggiani R., The regulator problem for parabolic equations with Dirichlet boundary control, Appl. Math. Optim.16 (1987) 147-168. Zbl0639.49002MR894809
- [17] Lions J.-L., Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan14 (1962) 233-241. Zbl0108.11202MR152878
- [18] Lions J.-L., Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1969. Zbl0179.41801MR244606
- [19] Lions J.-L., Magenes E., Problèmes aux limites non homogènes, vol. 1, Dunod, Paris, 1968. Zbl0165.10801
- [20] Lions J.-L., Magenes E., Problèmes aux limites non homogènes, vol. 2, Dunod, Paris, 1968. Zbl0165.10801
- [21] Nguyen P.A., Raymond J.-P., Control problems for convection-diffusion equations with control localized on manifolds, ESAIM Control Optim. Calc. Var.6 (2001) 467-488. Zbl1004.49019MR1836052
- [22] Raymond J.-P., Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control Optim.45 (2006) 790-828. Zbl1121.93064
- [23] Raymond J.-P., Local boundary feedback stabilization of the Navier–Stokes equations, in: Control Systems: Theory, Numerics and Applications, http://pos.sissa.it. Zbl1114.93040
- [24] Solonnikov V.A., Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations, in: Amer. Math. Soc. Transl. Ser. 2, vol. 75, 1968, pp. 1-116. Zbl0187.03402
- [25] Temam R., Navier–Stokes Equations, North-Holland, 1984. Zbl0568.35002
- [26] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987. Zbl0655.35002MR1094820
- [27] von Wahl W., The Equations of Navier–Stokes and Abstract Parabolic Equations, Vieweg and Sohn, Braunschweig, 1985.
Citations in EuDML Documents
top- Shirshendu Chowdhury, Mythily Ramaswamy, Optimal control of linearized compressible Navier–Stokes equations
- R. Farwig, H. Kozono, H. Sohr, Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence
- Mehdi Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system
- Mehdi Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system
- Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond, Penalization of Dirichlet optimal control problems
- Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond, Penalization of Dirichlet optimal control problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.