Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions

J.-P. Raymond

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 921-951
  • ISSN: 0294-1449

How to cite

top

Raymond, J.-P.. "Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 921-951. <http://eudml.org/doc/78770>.

@article{Raymond2007,
author = {Raymond, J.-P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; Stokes equations; Oseen equations; nonhomogeneous boundary conditions; regularity},
language = {eng},
number = {6},
pages = {921-951},
publisher = {Elsevier},
title = {Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions},
url = {http://eudml.org/doc/78770},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Raymond, J.-P.
TI - Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 921
EP - 951
LA - eng
KW - Navier-Stokes equations; Stokes equations; Oseen equations; nonhomogeneous boundary conditions; regularity
UR - http://eudml.org/doc/78770
ER -

References

top
  1. [1] Amann H., Nonhomogeneous Navier–Stokes equations with integrable low-regularity data, in: Birman, (Eds.), Nonlinear Problems in Mathematical Physics and Related Topics II, Kluwer Academic/Plenum Publishers, New York, 2002, pp. 1-28. Zbl1201.76038
  2. [2] Amann H., Navier–Stokes equations with nonhomogeneous Dirichlet boundary conditions, J. Nonlinear Math. Phys.10 (Suppl. 1) (2003) 1-11. 
  3. [3] V. Barbu, I. Lasiecka, R. Triggiani, Tangential boundary stabilization of Navier–Stokes equations, Mem. Amer. Math. Soc. (2006), in press. Zbl1098.35026
  4. [4] Bensoussan A., Da Prato G., Delfour M.C., Mitter S.K., Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser, 1992. Zbl0781.93002MR1182557
  5. [5] Bensoussan A., Da Prato G., Delfour M.C., Mitter S.K., Representation and Control of Infinite Dimensional Systems, vol. 2, Birkhäuser, 1993. Zbl0790.93016
  6. [6] Dautray R., Lions J.-L., Analyse Mathématique et Calcul Numérique, vol. 8, Masson, Paris, 1988. Zbl0652.45001
  7. [7] R. Farwig, G.P. Galdi, H. Sohr, A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data, J. Math. Fluid Mech., published on line 27 October 2005. Zbl1104.35032
  8. [8] Fursikov A.V., Gunzburger M.D., Hou L.S., Trace theorems for three-dimensional time-dependent solenoidal vector fields and their applications, Trans. Amer. Math. Soc.354 (2001) 1079-1116. Zbl0988.46024MR1867373
  9. [9] Fursikov A.V., Gunzburger M.D., Hou L.S., Inhomogeneous boundary value problems for the three-dimensional evolutionary Navier–Stokes equations, J. Math. Fluid Mech.4 (2002) 45-75. Zbl0991.35064
  10. [10] Galdi G.P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. 1, Springer-Verlag, 1994. Zbl0949.35004
  11. [11] Galdi G.P., Simader C.G., Sohr H., A class of solutions to the stationary Stokes and Navier–Stokes equations with boundary data in W 1 / q , q , Math. Ann.331 (2005) 41-74. Zbl1064.35133
  12. [12] Grisvard P., Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl.45 (1966) 143-206, and 207–290. Zbl0187.05803
  13. [13] Grubb G., Solonnikov V.A., Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods, Math. Scand.69 (1991) 217-290. Zbl0766.35034
  14. [14] Grubb G., Nonhomogeneous Dirichlet Navier–Stokes problems in low regularity L p Sobolev spaces, J. Math. Fluid Mech.3 (2001) 57-81. Zbl0992.35065
  15. [15] He J.-W., Glowinski R., Metcalfe R., Nordlander A., Periaux J., Active control and drag optimization for flow past a circular cylinder, J. Comp. Phys.163 (2000) 83-117. Zbl0977.76021MR1777723
  16. [16] Lasiecka I., Triggiani R., The regulator problem for parabolic equations with Dirichlet boundary control, Appl. Math. Optim.16 (1987) 147-168. Zbl0639.49002MR894809
  17. [17] Lions J.-L., Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan14 (1962) 233-241. Zbl0108.11202MR152878
  18. [18] Lions J.-L., Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1969. Zbl0179.41801MR244606
  19. [19] Lions J.-L., Magenes E., Problèmes aux limites non homogènes, vol. 1, Dunod, Paris, 1968. Zbl0165.10801
  20. [20] Lions J.-L., Magenes E., Problèmes aux limites non homogènes, vol. 2, Dunod, Paris, 1968. Zbl0165.10801
  21. [21] Nguyen P.A., Raymond J.-P., Control problems for convection-diffusion equations with control localized on manifolds, ESAIM Control Optim. Calc. Var.6 (2001) 467-488. Zbl1004.49019MR1836052
  22. [22] Raymond J.-P., Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control Optim.45 (2006) 790-828. Zbl1121.93064
  23. [23] Raymond J.-P., Local boundary feedback stabilization of the Navier–Stokes equations, in: Control Systems: Theory, Numerics and Applications, http://pos.sissa.it. Zbl1114.93040
  24. [24] Solonnikov V.A., Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations, in: Amer. Math. Soc. Transl. Ser. 2, vol. 75, 1968, pp. 1-116. Zbl0187.03402
  25. [25] Temam R., Navier–Stokes Equations, North-Holland, 1984. Zbl0568.35002
  26. [26] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987. Zbl0655.35002MR1094820
  27. [27] von Wahl W., The Equations of Navier–Stokes and Abstract Parabolic Equations, Vieweg and Sohn, Braunschweig, 1985. 

Citations in EuDML Documents

top
  1. Shirshendu Chowdhury, Mythily Ramaswamy, Optimal control of linearized compressible Navier–Stokes equations
  2. R. Farwig, H. Kozono, H. Sohr, Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence
  3. Mehdi Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system
  4. Mehdi Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system
  5. Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond, Penalization of Dirichlet optimal control problems
  6. Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond, Penalization of Dirichlet optimal control problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.