Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence

R. Farwig; H. Kozono; H. Sohr

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 125, page 51-70
  • ISSN: 0041-8994

How to cite

top

Farwig, R., Kozono, H., and Sohr, H.. "Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 51-70. <http://eudml.org/doc/242112>.

@article{Farwig2011,
author = {Farwig, R., Kozono, H., Sohr, H.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {global weak solution; Navier-Stokes equation; boundary data; divergence; perturbation term; existence; approximate system},
language = {eng},
pages = {51-70},
publisher = {Seminario Matematico of the University of Padua},
title = {Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence},
url = {http://eudml.org/doc/242112},
volume = {125},
year = {2011},
}

TY - JOUR
AU - Farwig, R.
AU - Kozono, H.
AU - Sohr, H.
TI - Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 125
SP - 51
EP - 70
LA - eng
KW - global weak solution; Navier-Stokes equation; boundary data; divergence; perturbation term; existence; approximate system
UR - http://eudml.org/doc/242112
ER -

References

top
  1. [1] H. Amann, On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech., 2 (2000), pp. 16–98. Zbl0989.35107MR1755865
  2. [2] H. Amann, Navier-Stokes equations with nonhomogeneous Dirichlet data, J. Nonlinear Math. Phys., 10, Suppl. 1 (2003), pp. 1–11. MR2063541
  3. [3] R. Farwig - G. P. Galdi - H. Sohr, A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech., 8 (2006), pp. 423–444. Zbl1104.35032MR2258419
  4. [4] R. Farwig - H. Kozono - H. Sohr, Global weak solutions of the Navier-Stokes system with nonzero boundary conditions. Funkcial. Ekvac., 53 (2010), pp. 231–247. Zbl1291.35030MR2730622
  5. [5] R. Farwig - H. Kozono - H. Sohr, Global Leray-Hopf weak solutions of the Navier-Stokes equations with nonzero time-dependent boundary values. Progress Nonl. Differential Equations Appl., Birkhäuser-Verlag Basel, 60 (2011), pp. 211–232. Zbl1247.35090
  6. [6] A. V. Fursikov - M. D. Gunzburger - L. S. Hou, Inhomogeneous boundary value problems for the three-dimensional evolutionary Navier-Stokes equations. J. Math. Fluid Mech., 4 (2002), pp. 45–75. Zbl0991.35064MR1891074
  7. [7] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, Springer Verlag, New York, 1994. Zbl0949.35004MR1284205
  8. [8] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L r -spaces. Math. Z., 178 (1981), pp. 297–329. Zbl0473.35064MR635201
  9. [9] Y. Giga - H. Sohr, Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal., 102 (1991), pp. 72–94. Zbl0739.35067MR1138838
  10. [10] G. Grubb, Nonhomogeneous Dirichlet Navier-Stokes problems in low regularity L p Sobolev spaces. J. Math. Fluid Mech., 3 (2001), pp. 57-81. Zbl0992.35065MR1830655
  11. [11] J. G. Heywood, The Navier-Stokes Equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J., 29 (1980), pp. 639–681. Zbl0494.35077MR589434
  12. [12] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr., 4 (1950), pp. 213–231. Zbl0042.10604MR50423
  13. [13] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York, 1969. Zbl0121.42701MR254401
  14. [14] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 63 (1934), pp. 193–248. MR1555394JFM60.0726.05
  15. [15] J. P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24 (2007), pp. 921–951. Zbl1136.35070MR2371113
  16. [16] H. Sohr, The Navier-Stokes Equations. Birkhäuser Verlag, Basel, 2001. Zbl0983.35004
  17. [17] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math., 8 (1977), pp. 467–529. Zbl0404.35081
  18. [18] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam, 1977. Zbl0383.35057MR609732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.