Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
Sergio Conti; Georg Dolzmann; Bernd Kirchheim
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 6, page 953-962
- ISSN: 0294-1449
Access Full Article
topHow to cite
topConti, Sergio, Dolzmann, Georg, and Kirchheim, Bernd. "Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 953-962. <http://eudml.org/doc/78771>.
@article{Conti2007,
author = {Conti, Sergio, Dolzmann, Georg, Kirchheim, Bernd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {differential inclusions; convex integration; tetragonal phase},
language = {eng},
number = {6},
pages = {953-962},
publisher = {Elsevier},
title = {Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions},
url = {http://eudml.org/doc/78771},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Conti, Sergio
AU - Dolzmann, Georg
AU - Kirchheim, Bernd
TI - Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 953
EP - 962
LA - eng
KW - differential inclusions; convex integration; tetragonal phase
UR - http://eudml.org/doc/78771
ER -
References
top- [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [2] Adams J., Conti S., DeSimone A., Soft elasticity and microstructure in smectic C elastomers, Cont. Mech. Thermodyn.18 (2007) 319-334. Zbl1170.76303MR2270449
- [3] Ball J.M., Some open problems in elasticity, in: Newton P., Holmes P., Weinstein A. (Eds.), Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 3-59. Zbl1054.74008MR1919825
- [4] Ball J.M., James R.D., Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
- [5] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. Lond. A338 (1992) 389-450. Zbl0758.73009
- [6] Bhattacharya K., Self-accommodation in martensite, Arch. Ration. Mech. Anal.120 (1992) 201-244. Zbl0771.73007MR1183551
- [7] Chipot M., Kinderlehrer D., Equilibrium configurations of crystals, Arch. Ration. Mech. Anal.103 (1988) 237-277. Zbl0673.73012MR955934
- [8] Conti S., DeSimone A., Dolzmann G., Müller S., Otto F., Multiscale modeling of materials – the role of analysis, in: Kirkilionis M., Krömker S., Rannacher R., Tomi F. (Eds.), Trends in Nonlinear Analysis (Heidelberg), Springer, 2002, pp. 375-408. Zbl1065.74056
- [9] Dacorogna B., Marcellini P., Sur le problème de Cauchy–Dirichlet pour les systèmes d'équations non linéaires du premier ordre, C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 599-602. Zbl0860.35020
- [10] Dacorogna B., Marcellini P., General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases, Acta Math.178 (1997) 1-37. Zbl0901.49027
- [11] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, vol. 37, Birkhäuser, 1999. Zbl0938.35002MR1702252
- [12] DeSimone A., Dolzmann G., Macroscopic response of nematic elastomers via relaxation of a class of -invariant energies, Arch. Ration. Mech. Anal.161 (2002) 181-204. Zbl1017.74049MR1894590
- [13] Dolzmann G., Kirchheim B., Liquid-like behavior of shape memory alloys, C. R. Math. Acad. Sci. Paris, Ser. I336 (2003) 441-446. Zbl1113.74411MR1979361
- [14] Dolzmann G., Müller S., Microstructures with finite surface energy: the two-well problem, Arch. Ration. Mech. Anal.132 (1995) 101-141. Zbl0846.73054MR1365827
- [15] Gromov M., Partial Differential Relations, Springer-Verlag, 1986. Zbl0651.53001MR864505
- [16] B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded variation, Preprint 12, Max Planck Institute for Mathematics in the Sciences, Leipzig, 1998.
- [17] Kirchheim B., Deformations with finitely many gradients and stability of quasiconvex hulls, C. R. Acad. Sci. Paris Sér. I Math.332 (2001) 289-294. Zbl0989.49013MR1817378
- [18] B. Kirchheim, Rigidity and geometry of microstructures, MPI-MIS Lecture Notes 16, 2002.
- [19] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, in: Hildebrandt S., Karcher H. (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, 2003, pp. 347-395. Zbl1290.35097MR2008346
- [20] Marcellini P., Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math.51 (1985) 1-28. Zbl0573.49010MR788671
- [21] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
- [22] Müller S., Šverák V., Attainment results for the two-well problem by convex integration, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 239-251. Zbl0930.35038MR1449410
- [23] Müller S., Šverák V., Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS)1 (1999) 393-442. Zbl0953.35042MR1728376
- [24] Müller S., Sychev M.A., Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal.181 (2001) 447-475. Zbl0989.49012MR1821703
- [25] Šverák V., On the problem of two wells, in: Microstructure and Phase Transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 183-189. Zbl0797.73079MR1320537
- [26] Sychev M.A., Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. Partial Differential Equations13 (2001) 213-229. Zbl0994.35038MR1861098
Citations in EuDML Documents
top- Nicole Schadewaldt, The microstructure of Lipschitz solutions for a one-dimensional logarithmic diffusion equation
- Andrew Lorent, The regularisation of the -well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions
- Andrew Lorent, The regularisation of the -well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.