Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions

Sergio Conti; Georg Dolzmann; Bernd Kirchheim

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 953-962
  • ISSN: 0294-1449

How to cite

top

Conti, Sergio, Dolzmann, Georg, and Kirchheim, Bernd. "Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 953-962. <http://eudml.org/doc/78771>.

@article{Conti2007,
author = {Conti, Sergio, Dolzmann, Georg, Kirchheim, Bernd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {differential inclusions; convex integration; tetragonal phase},
language = {eng},
number = {6},
pages = {953-962},
publisher = {Elsevier},
title = {Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions},
url = {http://eudml.org/doc/78771},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Conti, Sergio
AU - Dolzmann, Georg
AU - Kirchheim, Bernd
TI - Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 953
EP - 962
LA - eng
KW - differential inclusions; convex integration; tetragonal phase
UR - http://eudml.org/doc/78771
ER -

References

top
  1. [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] Adams J., Conti S., DeSimone A., Soft elasticity and microstructure in smectic C elastomers, Cont. Mech. Thermodyn.18 (2007) 319-334. Zbl1170.76303MR2270449
  3. [3] Ball J.M., Some open problems in elasticity, in: Newton P., Holmes P., Weinstein A. (Eds.), Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 3-59. Zbl1054.74008MR1919825
  4. [4] Ball J.M., James R.D., Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
  5. [5] Ball J.M., James R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. Lond. A338 (1992) 389-450. Zbl0758.73009
  6. [6] Bhattacharya K., Self-accommodation in martensite, Arch. Ration. Mech. Anal.120 (1992) 201-244. Zbl0771.73007MR1183551
  7. [7] Chipot M., Kinderlehrer D., Equilibrium configurations of crystals, Arch. Ration. Mech. Anal.103 (1988) 237-277. Zbl0673.73012MR955934
  8. [8] Conti S., DeSimone A., Dolzmann G., Müller S., Otto F., Multiscale modeling of materials – the role of analysis, in: Kirkilionis M., Krömker S., Rannacher R., Tomi F. (Eds.), Trends in Nonlinear Analysis (Heidelberg), Springer, 2002, pp. 375-408. Zbl1065.74056
  9. [9] Dacorogna B., Marcellini P., Sur le problème de Cauchy–Dirichlet pour les systèmes d'équations non linéaires du premier ordre, C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 599-602. Zbl0860.35020
  10. [10] Dacorogna B., Marcellini P., General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases, Acta Math.178 (1997) 1-37. Zbl0901.49027
  11. [11] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, vol. 37, Birkhäuser, 1999. Zbl0938.35002MR1702252
  12. [12] DeSimone A., Dolzmann G., Macroscopic response of nematic elastomers via relaxation of a class of SO 3 -invariant energies, Arch. Ration. Mech. Anal.161 (2002) 181-204. Zbl1017.74049MR1894590
  13. [13] Dolzmann G., Kirchheim B., Liquid-like behavior of shape memory alloys, C. R. Math. Acad. Sci. Paris, Ser. I336 (2003) 441-446. Zbl1113.74411MR1979361
  14. [14] Dolzmann G., Müller S., Microstructures with finite surface energy: the two-well problem, Arch. Ration. Mech. Anal.132 (1995) 101-141. Zbl0846.73054MR1365827
  15. [15] Gromov M., Partial Differential Relations, Springer-Verlag, 1986. Zbl0651.53001MR864505
  16. [16] B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded variation, Preprint 12, Max Planck Institute for Mathematics in the Sciences, Leipzig, 1998. 
  17. [17] Kirchheim B., Deformations with finitely many gradients and stability of quasiconvex hulls, C. R. Acad. Sci. Paris Sér. I Math.332 (2001) 289-294. Zbl0989.49013MR1817378
  18. [18] B. Kirchheim, Rigidity and geometry of microstructures, MPI-MIS Lecture Notes 16, 2002. 
  19. [19] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, in: Hildebrandt S., Karcher H. (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, 2003, pp. 347-395. Zbl1290.35097MR2008346
  20. [20] Marcellini P., Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math.51 (1985) 1-28. Zbl0573.49010MR788671
  21. [21] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
  22. [22] Müller S., Šverák V., Attainment results for the two-well problem by convex integration, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 239-251. Zbl0930.35038MR1449410
  23. [23] Müller S., Šverák V., Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS)1 (1999) 393-442. Zbl0953.35042MR1728376
  24. [24] Müller S., Sychev M.A., Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal.181 (2001) 447-475. Zbl0989.49012MR1821703
  25. [25] Šverák V., On the problem of two wells, in: Microstructure and Phase Transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 183-189. Zbl0797.73079MR1320537
  26. [26] Sychev M.A., Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. Partial Differential Equations13 (2001) 213-229. Zbl0994.35038MR1861098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.