Finiteness of the set of solutions of Plateau's problem for polygonal boundary curves

Ruben Jakob

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 963-987
  • ISSN: 0294-1449

How to cite

top

Jakob, Ruben. "Finiteness of the set of solutions of Plateau's problem for polygonal boundary curves." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 963-987. <http://eudml.org/doc/78772>.

@article{Jakob2007,
author = {Jakob, Ruben},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {finiteness of the number of minimal surfaces; Plateau's problem for polygonal boundary curves},
language = {eng},
number = {6},
pages = {963-987},
publisher = {Elsevier},
title = {Finiteness of the set of solutions of Plateau's problem for polygonal boundary curves},
url = {http://eudml.org/doc/78772},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Jakob, Ruben
TI - Finiteness of the set of solutions of Plateau's problem for polygonal boundary curves
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 963
EP - 987
LA - eng
KW - finiteness of the number of minimal surfaces; Plateau's problem for polygonal boundary curves
UR - http://eudml.org/doc/78772
ER -

References

top
  1. [1] Courant R., Critical points and unstable minimal surfaces, Proc. Natl. Acad. Sci. USA27 (1941) 51-57. Zbl67.0368.02MR3484JFM67.0368.02
  2. [2] Dierkes U., Hildebrandt S. et al. , Minimal Surfaces I, Grundlehren Math. Wiss., vol. 295, Springer, Berlin, 1991. Zbl0777.53012
  3. [3] Dierkes U., Hildebrandt S. et al. , Minimal Surfaces II, Grundlehren Math. Wiss., vol. 295, Springer, Berlin, 1991. Zbl0777.53013
  4. [4] Dieudonné J., Foundations of Modern Analysis, Academic Press, New York, 1960. Zbl0100.04201MR120319
  5. [5] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Classics in Math., third ed., Springer, Berlin, 1998. Zbl1042.35002
  6. [6] Guillemin V., Pollack A., Differential Topology, Prentice-Hall, New Jersey, 1974. Zbl0361.57001MR348781
  7. [7] Gulliver R., Lesley F.D., On boundary branch points of minimizing surfaces, Arch. Ration. Mech. Anal.52 (1973) 20-25. Zbl0263.53009MR346641
  8. [8] Heinz E., Ein Regularitätssatz für Flächen beschränkter mittlerer Krümmung, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II12 (1969) 107-118. Zbl0192.58302MR270313
  9. [9] Heinz E., On surfaces of constant mean curvature with polygonal boundaries, Arch. Ration. Mech. Anal.36 (1970) 335-347. Zbl0191.12002MR279697
  10. [10] Heinz E., Über die analytische Abhängigkeit der Lösungen eines linearen elliptischen Randwertproblems von den Parametern, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1979) 1-20. Zbl0436.35010MR568799
  11. [11] Heinz E., Über eine Verallgemeinerung des Plateauschen Problems, Manuscripta Math.28 (1979) 81-88. Zbl0415.49027MR535696
  12. [12] Heinz E., Ein mit der Theorie der Minimalflächen zusammenhängendes Variationsproblem, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl II. (1980) 25-35. Zbl0456.49029MR610591
  13. [13] Heinz E., Zum Marx-Shiffmanschen Variationsproblem, J. Reine Angew. Math.344 (1983) 196-200. Zbl0511.49022MR716255
  14. [14] Heinz E., Minimalflächen mit polygonalem Rand, Math. Z.183 (1983) 547-564. Zbl0507.49027MR710771
  15. [15] Heinz E., Hildebrandt S., The number of branch points of surfaces of bounded mean curvature, J. Differencial Geom.4 (1970) 227-235. Zbl0195.23003MR267495
  16. [16] Hildebrandt S., Boundary behavior of minimal surfaces, Arch. Ration. Mech. Anal.35 (1969) 47-82. Zbl0183.39402MR248650
  17. [17] Jakob R., H-Flächen-Index-Formel, Bonner Math. Schriften366 (2004) 1-92. Zbl1087.53009MR2208441
  18. [18] Jakob R., H-surface-index-formula, Ann. Inst. H. Poincaré Analyse Non-Linéaire22 (2005) 557-578. Zbl1082.53007MR2171991
  19. [19] R. Jakob, Schwarz operators of minimal surfaces spanning polygonal boundary curves, Calc. Var., submitted for publication. Zbl1129.49044
  20. [20] Jakob R., Finiteness of the set of solutions of Plateau's problem with polygonal boundary curves, Bonner Math. Schriften379 (2006) 1-95. Zbl1109.53009MR2338059
  21. [21] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, 1976. Zbl0342.47009MR407617
  22. [22] Lojasiewics S., Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat.18 (3) (1964) 449-474. Zbl0128.17101MR173265
  23. [23] Nitsche J.C.C., Uniqueness and non-uniqueness for Plateau's Problem – One of the last major questions, in: Minimal Submanifolds and Geodesics, Kaigai Publications, Tokyo, 1978, pp. 143-161. Zbl0436.53008
  24. [24] Sauvigny F., On immersions of constant mean curvature: Compactness results and finiteness theorems for Plateau's Problem, Arch. Ration. Mech. Anal.110 (1990) 125-140. Zbl0753.53006MR1037345
  25. [25] Sauvigny F., Ein Eindeutigkeitssatz für Minimalflächen im R p mit polygonalem Rand, J. Reine Angew. Math.358 (1985) 92-96. Zbl0553.53003MR797676
  26. [26] Sauvigny F., Die zweite Variation von Minimalflächen im R p mit polygonalem Rand, Math. Z.189 (1985) 167-184. Zbl0543.53004MR779215
  27. [27] Tomi F., On the local uniqueness of the problem of least area, Arch. Ration. Mech. Anal.52 (1973) 312-318. Zbl0277.49016MR346639
  28. [28] Tomi F., On the finite solvability of Plateau's Problem, in: Lecture Notes in Math., vol. 579, Springer, 1977, pp. 679-695. Zbl0361.53008MR454874

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.