Triangulation of semi-analytic sets

S. Lojasiewicz

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1964)

  • Volume: 18, Issue: 4, page 449-474
  • ISSN: 0391-173X

How to cite

top

Lojasiewicz, S.. "Triangulation of semi-analytic sets." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.4 (1964): 449-474. <http://eudml.org/doc/83333>.

@article{Lojasiewicz1964,
author = {Lojasiewicz, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {topology},
language = {eng},
number = {4},
pages = {449-474},
publisher = {Scuola normale superiore},
title = {Triangulation of semi-analytic sets},
url = {http://eudml.org/doc/83333},
volume = {18},
year = {1964},
}

TY - JOUR
AU - Lojasiewicz, S.
TI - Triangulation of semi-analytic sets
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1964
PB - Scuola normale superiore
VL - 18
IS - 4
SP - 449
EP - 474
LA - eng
KW - topology
UR - http://eudml.org/doc/83333
ER -

References

top
  1. [1] P.S. Alexandrov, Combinatorial Topology I, Graylock, Rochester N. Y., 1956. Zbl0903.55001
  2. [2] B. Giesecke, Simpliziale Zerlegung abzählbarer komplexer Räume, Thesis, A. Schubert, München, 1963. Zbl0123.39602
  3. [3] H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. Zbl0108.07804MR98847
  4. [4] B.C. Koopman and. A.B. Brown, On the covering of analytic loci by complexes, Trans. Amer. Math. Soc.34 (1932), 231-251. Zbl0004.13203MR1501636JFM58.1203.02
  5. [5] S. Lefschetz,Topology, Amer. Math. Soc, Coll. Publications, New York, 1930. 
  6. [6] S. Lefschetz and J.H.C. Whitehead, On analytical complexes, Trans. Amer. Math. Soc.35 (1933), 510-517. Zbl0006.37006MR1501698JFM59.0559.02
  7. [7] S. Lojasiewicz, Sur le problème de la division, Rozprawy Mat.22 (1961). Zbl0096.32102MR126072
  8. [8] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels. Coll. dn CNRS sur les équations aux dérivées partielles, Paris, 1962, 87-89. Zbl0234.57007MR160856
  9. [9] J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) 74 (1961), 575-590. Zbl0102.38103MR133127
  10. [10] W.F. Osgood, Lehrburch der Funktionentheorie II, 1, Teubner, Leipzig, 1929. JFM54.0326.10
  11. [11] R. Remmert and K. Stein, Über die wesentlichen Singularitäten analytischer Mengen, Math. Ann.126 (1953), 263-306. Zbl0051.06303MR60033
  12. [12] A. Sard, The measure of the critical values of differentiale maps, Bull. Amer. Math. Soc.48 (1942), 883-890. Zbl0063.06720MR7523
  13. [13] A. Seidenberg, A new decision method for elementary algebra, Ann. of Math. (2) 60 (1954), 365-374. Zbl0056.01804MR63994
  14. [14] R. Thom, La stabilité topologique des applications polynomiales, Enseignement Math.8 (1962), 24-33. Zbl0109.40002MR148079
  15. [15] B.L. van der WAERDEN, Topologische Begründung des Kalküls der abzählenden Geometrie, Math. Ann.102 (1929), 337-362. Zbl55.0992.01JFM55.0992.01
  16. [16] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc.36 (1934), 63-89. Zbl0008.24902MR1501735JFM60.0217.01
  17. [17] H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957) 545-556. Zbl0078.13403MR95844
  18. [18] H. Whitney, Geometric Integration Theory, Princeton, 1957. Zbl0083.28204MR87148
  19. [19] K. Sato, Local triangulation of Real Analytic Varieties, Osaka Math. J., 15 (1963), 109-125. Zbl0219.57014MR156355

Citations in EuDML Documents

top
  1. J. Gauthier, I Kupka, Genericity of observability and the existence of asymptotic observers
  2. Bernard Teissier, Théorèmes de finitude en géométrie analytique
  3. A. M. Kytmanov, C. Rea, Elimination of L 1 singularities on Hölder peak sets for C R functions
  4. D. Barlet, Contribution effective dans le réel
  5. M. Balde, P. Jouan, Genericity of observability of control-affine systems
  6. Jean-Michel Bony, Polynômes de Bernstein et monodromie
  7. Masahiro Shiota, Nash Manifolds
  8. Guido Pollini, Intersection differential forms
  9. B. Malgrange, Sur les polynômes de I. N. Bernstein
  10. Bernard Malgrange, Polynômes de Bernstein-Sato

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.