Semi-strong convergence of sequences satisfying a variational inequality
Marc Briane; Gabriel Mokobodzki; François Murat
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 1, page 121-133
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBriane, Marc, Mokobodzki, Gabriel, and Murat, François. "Semi-strong convergence of sequences satisfying a variational inequality." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 121-133. <http://eudml.org/doc/78775>.
@article{Briane2008,
author = {Briane, Marc, Mokobodzki, Gabriel, Murat, François},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {homogenization; monotone operator; potential; variational inequality},
language = {eng},
number = {1},
pages = {121-133},
publisher = {Elsevier},
title = {Semi-strong convergence of sequences satisfying a variational inequality},
url = {http://eudml.org/doc/78775},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Briane, Marc
AU - Mokobodzki, Gabriel
AU - Murat, François
TI - Semi-strong convergence of sequences satisfying a variational inequality
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 121
EP - 133
LA - eng
KW - homogenization; monotone operator; potential; variational inequality
UR - http://eudml.org/doc/78775
ER -
References
top- [1] Bensoussan A., Lions J.L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North-Holland, 1978. Zbl0404.35001MR503330
- [2] Briane M., Mokobodzki G., Murat F., Variations on a strange semi-continuity result, J. Funct. Anal.227 (1) (2005) 78-112. Zbl1081.47049MR2165088
- [3] Cioranescu D., Murat F., Un terme étrange venu d'ailleurs, I & II, in: Brezis H., Lions J.-L. (Eds.), Nonlinear Partial Differential Equations and their Applications Collège de France Seminar, vols. II & III, Research Notes in Math., vols. 60 and 70, Pitman, London, 1982, pp. 98-138, and 154–178; English translation: A strange term coming from nowhere, in: Cherkaev A., Kohn R.V. (Eds.), Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1997, pp. 44-93. Zbl0496.35030
- [4] Jikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Zbl0838.35001MR1329546
- [5] Meyers N.G., An -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa17 (1963) 189-206. Zbl0127.31904MR159110
- [6] Murat F., Tartar L., H-convergence, in: Cherkaev L., Kohn R.V. (Eds.), Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1998, pp. 21-43. Zbl0920.35019MR1493039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.