Semi-strong convergence of sequences satisfying a variational inequality

Marc Briane; Gabriel Mokobodzki; François Murat

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 121-133
  • ISSN: 0294-1449

How to cite

top

Briane, Marc, Mokobodzki, Gabriel, and Murat, François. "Semi-strong convergence of sequences satisfying a variational inequality." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 121-133. <http://eudml.org/doc/78775>.

@article{Briane2008,
author = {Briane, Marc, Mokobodzki, Gabriel, Murat, François},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {homogenization; monotone operator; potential; variational inequality},
language = {eng},
number = {1},
pages = {121-133},
publisher = {Elsevier},
title = {Semi-strong convergence of sequences satisfying a variational inequality},
url = {http://eudml.org/doc/78775},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Briane, Marc
AU - Mokobodzki, Gabriel
AU - Murat, François
TI - Semi-strong convergence of sequences satisfying a variational inequality
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 121
EP - 133
LA - eng
KW - homogenization; monotone operator; potential; variational inequality
UR - http://eudml.org/doc/78775
ER -

References

top
  1. [1] Bensoussan A., Lions J.L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North-Holland, 1978. Zbl0404.35001MR503330
  2. [2] Briane M., Mokobodzki G., Murat F., Variations on a strange semi-continuity result, J. Funct. Anal.227 (1) (2005) 78-112. Zbl1081.47049MR2165088
  3. [3] Cioranescu D., Murat F., Un terme étrange venu d'ailleurs, I & II, in: Brezis H., Lions J.-L. (Eds.), Nonlinear Partial Differential Equations and their Applications Collège de France Seminar, vols. II & III, Research Notes in Math., vols. 60 and 70, Pitman, London, 1982, pp. 98-138, and 154–178; English translation: A strange term coming from nowhere, in: Cherkaev A., Kohn R.V. (Eds.), Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1997, pp. 44-93. Zbl0496.35030
  4. [4] Jikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Zbl0838.35001MR1329546
  5. [5] Meyers N.G., An L p -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa17 (1963) 189-206. Zbl0127.31904MR159110
  6. [6] Murat F., Tartar L., H-convergence, in: Cherkaev L., Kohn R.V. (Eds.), Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1998, pp. 21-43. Zbl0920.35019MR1493039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.