An explicit solution to a system of implicit differential equations

Bernard Dacorogna; Paolo Marcellini; Emanuele Paolini

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 163-171
  • ISSN: 0294-1449

How to cite

top

Dacorogna, Bernard, Marcellini, Paolo, and Paolini, Emanuele. "An explicit solution to a system of implicit differential equations." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 163-171. <http://eudml.org/doc/78778>.

@article{Dacorogna2008,
author = {Dacorogna, Bernard, Marcellini, Paolo, Paolini, Emanuele},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {almost everywhere solutions; vectorial pyramids},
language = {eng},
number = {1},
pages = {163-171},
publisher = {Elsevier},
title = {An explicit solution to a system of implicit differential equations},
url = {http://eudml.org/doc/78778},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Dacorogna, Bernard
AU - Marcellini, Paolo
AU - Paolini, Emanuele
TI - An explicit solution to a system of implicit differential equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 163
EP - 171
LA - eng
KW - almost everywhere solutions; vectorial pyramids
UR - http://eudml.org/doc/78778
ER -

References

top
  1. [1] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal.100 (1987) 15-52. Zbl0629.49020MR906132
  2. [2] Bressan A., Flores F., On total differential inclusions, Rend. Sem. Mat. Univ. Padova92 (1994) 9-16. Zbl0821.35158MR1320474
  3. [3] Cellina A., On the differential inclusion x ' { - 1 , 1 } , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.69 (1980) 1-6. Zbl0922.34009MR641583
  4. [4] Cellina A., On minima of a functional of the gradient: necessary conditions, Nonlinear Anal.20 (1993) 337-341. Zbl0784.49021MR1206422
  5. [5] Cellina A., On minima of a functional of the gradient, sufficient conditions, Nonlinear Anal.20 (1993) 343-347. Zbl0784.49022MR1206423
  6. [6] Cellina A., Perrotta S., On a problem of potential wells, J. Convex Anal.2 (1995) 103-115. Zbl0880.49005MR1363363
  7. [7] Dacorogna B., Marcellini P., General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial case, Acta Math.178 (1997) 1-37. Zbl0901.49027MR1448710
  8. [8] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, vol. 37, Birkhäuser, 1999. Zbl0938.35002MR1702252
  9. [9] Dacorogna B., Pisante G., A general existence theorem for differential inclusions in the vector valued case, Portugal. Math.62 (2005) 421-436. Zbl1107.49008MR2191629
  10. [10] De Blasi F.S., Pianigiani G., Non convex valued differential inclusions in Banach spaces, J. Math. Anal. Appl.157 (1991) 469-494. Zbl0728.34013MR1112329
  11. [11] Friesecke G., A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 437-471. Zbl0809.49017MR1286914
  12. [12] R.D. James, unpublished work. 
  13. [13] B. Kirchheim, Rigidity and geometry of microstructures, Preprint Max-Plank-Institut, Leipzig, Lecture Note 16, 2003. Zbl1140.74303
  14. [14] Müller S., Sverak V., Attainment results for the two-well problem by convex integration, in: Jost J. (Ed.), Geometric Analysis and the Calculus of Variations, International Press, 1996, pp. 239-251. Zbl0930.35038MR1449410

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.