Finite Morse index solutions of exponential problems

E. N. Dancer

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 173-179
  • ISSN: 0294-1449

How to cite

top

Dancer, E. N.. "Finite Morse index solutions of exponential problems." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 173-179. <http://eudml.org/doc/78779>.

@article{Dancer2008,
author = {Dancer, E. N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {finite Morse index solutions; infinitely many bifurcations; exponential problems},
language = {eng},
number = {1},
pages = {173-179},
publisher = {Elsevier},
title = {Finite Morse index solutions of exponential problems},
url = {http://eudml.org/doc/78779},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Dancer, E. N.
TI - Finite Morse index solutions of exponential problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 173
EP - 179
LA - eng
KW - finite Morse index solutions; infinitely many bifurcations; exponential problems
UR - http://eudml.org/doc/78779
ER -

References

top
  1. [1] Ambrosio L., Cabré X., Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi, J. Amer. Math. Soc.13 (4) (2000) 725-739, (electronic). Zbl0968.35041MR1775735
  2. [2] Bahri A., Lions P.-L., Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math.45 (9) (1992) 1205-1215. Zbl0801.35026MR1177482
  3. [3] Bidaut-Véron M.-F., Véron L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math.106 (3) (1991) 489-539. Zbl0755.35036MR1134481
  4. [4] Buffoni B., Dancer E.N., Toland J.F., The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal.152 (3) (2000) 241-271. Zbl0962.76012MR1764946
  5. [5] Chandrasekhar S., An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939. Zbl0022.19207JFM65.1543.02
  6. [6] Dancer E.N., Stable and not too unstable solutions on R n for small diffusion, in: Brunner, Zhao, Zou (Eds.), Nonlinear Dynamics and Evolution Equations, Fields Institute Communications, Amer. Math. Soc., 2006, pp. 67-94. Zbl1259.35104MR2223349
  7. [7] Dancer E.N., Stable and finite Morse index solutions on R n or on bounded domains with small diffusion, Trans. Amer. Math. Soc.357 (3) (2005) 1225-1243. Zbl1145.35369MR2110438
  8. [8] E.N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., submitted for publication. Zbl1158.35013MR2427982
  9. [9] Dancer E.N., Stable solutions on R n and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations17 (9–10) (2004) 961-970. Zbl1150.35357MR2082455
  10. [10] Dancer E.N., Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4)178 (2000) 225-233. Zbl1030.35073MR1849387
  11. [11] Dancer E.N., Real analyticity and non-degeneracy, Math. Ann.325 (2) (2003) 369-392. Zbl1040.35033MR1962054
  12. [12] Hayman W., Kennedy P., Subharmonic Functions, Academic Press, London, 1979. Zbl0419.31001
  13. [13] Joseph D.D., Lundgren T.S., Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal.49 (1972/73) 241-269. Zbl0266.34021MR340701
  14. [14] Moschini L., New Liouville theorems for linear second order degenerate elliptic equations in divergence form, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (1) (2005) 11-23. Zbl1130.35070MR2114409
  15. [15] Saut J.-C., Temam R., Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations4 (3) (1979) 293-319. Zbl0462.35016MR522714
  16. [16] Suzuki T., Semilinear Elliptic Equations, GAKUTO International Series. Mathematical Sciences and Applications, vol. 3, Gakkōtosho Co. Ltd., Tokyo, 1994. Zbl0852.35043MR1428686

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.