Finite Morse index solutions of exponential problems
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 1, page 173-179
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDancer, E. N.. "Finite Morse index solutions of exponential problems." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 173-179. <http://eudml.org/doc/78779>.
@article{Dancer2008,
author = {Dancer, E. N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {finite Morse index solutions; infinitely many bifurcations; exponential problems},
language = {eng},
number = {1},
pages = {173-179},
publisher = {Elsevier},
title = {Finite Morse index solutions of exponential problems},
url = {http://eudml.org/doc/78779},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Dancer, E. N.
TI - Finite Morse index solutions of exponential problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 173
EP - 179
LA - eng
KW - finite Morse index solutions; infinitely many bifurcations; exponential problems
UR - http://eudml.org/doc/78779
ER -
References
top- [1] Ambrosio L., Cabré X., Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc.13 (4) (2000) 725-739, (electronic). Zbl0968.35041MR1775735
- [2] Bahri A., Lions P.-L., Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math.45 (9) (1992) 1205-1215. Zbl0801.35026MR1177482
- [3] Bidaut-Véron M.-F., Véron L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math.106 (3) (1991) 489-539. Zbl0755.35036MR1134481
- [4] Buffoni B., Dancer E.N., Toland J.F., The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal.152 (3) (2000) 241-271. Zbl0962.76012MR1764946
- [5] Chandrasekhar S., An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939. Zbl0022.19207JFM65.1543.02
- [6] Dancer E.N., Stable and not too unstable solutions on for small diffusion, in: Brunner, Zhao, Zou (Eds.), Nonlinear Dynamics and Evolution Equations, Fields Institute Communications, Amer. Math. Soc., 2006, pp. 67-94. Zbl1259.35104MR2223349
- [7] Dancer E.N., Stable and finite Morse index solutions on or on bounded domains with small diffusion, Trans. Amer. Math. Soc.357 (3) (2005) 1225-1243. Zbl1145.35369MR2110438
- [8] E.N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., submitted for publication. Zbl1158.35013MR2427982
- [9] Dancer E.N., Stable solutions on and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations17 (9–10) (2004) 961-970. Zbl1150.35357MR2082455
- [10] Dancer E.N., Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4)178 (2000) 225-233. Zbl1030.35073MR1849387
- [11] Dancer E.N., Real analyticity and non-degeneracy, Math. Ann.325 (2) (2003) 369-392. Zbl1040.35033MR1962054
- [12] Hayman W., Kennedy P., Subharmonic Functions, Academic Press, London, 1979. Zbl0419.31001
- [13] Joseph D.D., Lundgren T.S., Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal.49 (1972/73) 241-269. Zbl0266.34021MR340701
- [14] Moschini L., New Liouville theorems for linear second order degenerate elliptic equations in divergence form, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (1) (2005) 11-23. Zbl1130.35070MR2114409
- [15] Saut J.-C., Temam R., Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations4 (3) (1979) 293-319. Zbl0462.35016MR522714
- [16] Suzuki T., Semilinear Elliptic Equations, GAKUTO International Series. Mathematical Sciences and Applications, vol. 3, Gakkōtosho Co. Ltd., Tokyo, 1994. Zbl0852.35043MR1428686
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.