New Liouville theorems for linear second order degenerate elliptic equations in divergence form

Luisa Moschini

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 1, page 11-23
  • ISSN: 0294-1449

How to cite

top

Moschini, Luisa. "New Liouville theorems for linear second order degenerate elliptic equations in divergence form." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 11-23. <http://eudml.org/doc/78644>.

@article{Moschini2005,
author = {Moschini, Luisa},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Linear degenerate elliptic equation; Liouville-type theorem; maximum principle},
language = {eng},
number = {1},
pages = {11-23},
publisher = {Elsevier},
title = {New Liouville theorems for linear second order degenerate elliptic equations in divergence form},
url = {http://eudml.org/doc/78644},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Moschini, Luisa
TI - New Liouville theorems for linear second order degenerate elliptic equations in divergence form
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 11
EP - 23
LA - eng
KW - Linear degenerate elliptic equation; Liouville-type theorem; maximum principle
UR - http://eudml.org/doc/78644
ER -

References

top
  1. [1] Ambrosio L., Cabré X., Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi, J. Amer. Math. Soc.13 (4) (2000) 725-739. Zbl0968.35041MR1775735
  2. [2] Barlow M.T., On the Liouville property for divergence form operators, Canad. J. Math.50 (3) (1998) 487-496. Zbl0912.31004MR1629807
  3. [3] Barlow M.T., Bass R.F., Gui C., The Liouville property and a conjecture of De Giorgi, CPAMLIII (2000) 1007-1038. Zbl1072.35526MR1755949
  4. [4] Berestycki H., Caffarelli L., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipschitz domains, CPAML (1997) 1089-1111. Zbl0906.35035MR1470317
  5. [5] Berestycki H., Caffarelli L., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1997) 69-94. Zbl1079.35513MR1655510
  6. [6] De Giorgi E., Convergence problems for functionals and operators, in: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, pp. 131-188. Zbl0405.49001MR533166
  7. [7] De Giorgi E., Sulla differenziabilitá e analiticitá delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci.3 (1957) 25-43. Zbl0084.31901MR93649
  8. [8] Edmunds D.E., Peletier L.A., A Liouville theorem for degenerate elliptic equations, J. London Math. Soc. (2)7 (1973) 95-100. Zbl0262.35023MR328344
  9. [9] Finn R., Sur quelques généralisations du théorème de Picard, C. R. Acad. Sci. Paris Sér. A-B235 (1952) 596-598. Zbl0047.32201MR50668
  10. [10] Ghoussoub N., Gui C., On a conjecture of De Giorgi and some related problems, Math. Ann.311 (1998) 481-491. Zbl0918.35046MR1637919
  11. [11] Gilbarg D., Serrin J., On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math.4 (1955–1956) 309-340. Zbl0071.09701MR81416
  12. [12] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
  13. [13] A. Grigor'yan, L. Saloff-Coste, Stability results for Harnack inequalities, preprint. 
  14. [14] Karp L., Asymptotic behavior of solutions of elliptic equations I: Liouville-type theorems for linear and nonlinear equations on R n , J. Analyse Math.39 (1981) 75-102. Zbl0477.35039MR632457
  15. [15] Karp L., Asymptotic behavior of solutions of elliptic equations II: Analogues of Liouville’s theorem for solutions of inequalities on R n , n 3 , J. Analyse Math.39 (1981) 103-115. Zbl0477.35040MR632458
  16. [16] Kruzkov S.N., Certain properties of solutions to elliptic equations, Soviet. Math. Dokl.4 (1963) 686-695. Zbl0148.35701
  17. [17] Moser J., On Harnack's theorem for elliptic differential equations, CPAM14 (1961) 577-591. Zbl0111.09302MR159138
  18. [18] Nash J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958) 931-954. Zbl0096.06902MR100158
  19. [19] Peletier L.A., Serrin J., Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)5 (1978) 65-104. Zbl0383.35025MR481493
  20. [20] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967. Zbl0153.13602MR219861
  21. [21] O. Savin, Phase transitions: regularity of flat level sets, preprint. Zbl1180.35499
  22. [22] Trudinger N.S., On the regularity of generalized solutions of linear, non-uniformly elliptic equations, Arch. Rat. Mech. Anal.42 (1971) 51-62. Zbl0218.35035MR344656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.