Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity

Jeyabal Sivaloganathan; Scott J. Spector

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 201-213
  • ISSN: 0294-1449

How to cite

top

Sivaloganathan, Jeyabal, and Spector, Scott J.. "Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 201-213. <http://eudml.org/doc/78782>.

@article{Sivaloganathan2008,
author = {Sivaloganathan, Jeyabal, Spector, Scott J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible neo-Hookean material; nematic liquid crystals},
language = {eng},
number = {1},
pages = {201-213},
publisher = {Elsevier},
title = {Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity},
url = {http://eudml.org/doc/78782},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Sivaloganathan, Jeyabal
AU - Spector, Scott J.
TI - Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 201
EP - 213
LA - eng
KW - compressible neo-Hookean material; nematic liquid crystals
UR - http://eudml.org/doc/78782
ER -

References

top
  1. [1] Almgren F., Browder W., Lieb E.H., Co-area, liquid crystals, and minimal surfaces, in: Partial Differential Equations, Tianjin, 1986, Lecture Notes in Math., vol. 1306, Springer, 1988, pp. 1-22. Zbl0645.58015MR1032767
  2. [2] Avellaneda M., Lin F.H., Fonctions quasi affines et minimisation de u p , C. R. Acad. Sci. Paris Sér. I Math.306 (1988) 355-358. MR934618
  3. [3] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  4. [4] Ball J.M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. A306 (1982) 557-611. Zbl0513.73020MR703623
  5. [5] Ball J.M., Marsden J.E., Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch. Rational Mech. Anal.86 (1984) 251-277. Zbl0552.73006MR751509
  6. [6] Ball J.M., Murat F., W 1 , p -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
  7. [7] Bishop R.F., Hill R., Mott N.F., The theory of indentation and hardness tests, Proc. Phys. Soc.57 (1945) 147-159. 
  8. [8] Brezis H., Coron J.-M., Lieb E.H., Harmonic maps with defects, Comm. Math. Phys.107 (1986) 649-705. Zbl0608.58016MR868739
  9. [9] Conti S., De Lellis C., Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci.2 (5) (2003) 521-549. Zbl1114.74004MR2020859
  10. [10] Coron J.-M., Gulliver R.D., Minimizing p-harmonic maps into spheres, J. Reine Angew. Math.401 (1989) 82-100. Zbl0677.58021MR1018054
  11. [11] Gent A.N., Lindley P.B., Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. Lond. A249 (1958) 195-205. 
  12. [12] Hardt R.M., Singularities of harmonic maps, Bull. Amer. Math. Soc.34 (1997) 15-34. Zbl0871.58026MR1397098
  13. [13] Hardt R., Lin F.H., Wang C.Y., The p-energy minimality of x / x , Comm. Anal. Geom.6 (1998) 141-152. Zbl0922.58015MR1619840
  14. [14] Hill R.J., The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950. Zbl0041.10802MR37721
  15. [15] Hong M.-C., On the minimality of the p-harmonic map x x : B n S n - 1 , Calc. Var. Partial Differential Equations13 (2001) 459-468. Zbl0999.58009MR1867937
  16. [16] Horgan C.O., Polignone D.A., Cavitation in nonlinearly elastic solids: A review, Appl. Mech. Rev.48 (1995) 471-485. 
  17. [17] Jäger W., Kaul H., Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math.343 (1983) 146-161. Zbl0516.35032MR705882
  18. [18] James R.D., Spector S.J., The formation of filamentary voids in solids, J. Mech. Phys. Solids39 (1991) 783-813. Zbl0761.73020MR1120242
  19. [19] James R.D., Spector S.J., Remarks on W 1 , p -quasiconvexity, interpenetration of matter and function spaces for elasticity, Anal. Non Linéaire9 (1992) 263-280. Zbl0773.73022MR1168303
  20. [20] Lin F.H., A remark on the map x / x , C. R. Acad. Sci. Paris Sér. I Math.305 (1987) 529-531. Zbl0652.58022MR916327
  21. [21] Meyers N.G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc.119 (1965) 125-149. Zbl0166.38501MR188838
  22. [22] Meynard F., Existence and nonexistence results on the radially symmetric cavitation problem, Quart. Appl. Math.50 (1992) 201-226. Zbl0755.73027MR1162272
  23. [23] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
  24. [24] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR2492985
  25. [25] Müller S., Spector S.J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal.131 (1995) 1-66. Zbl0836.73025MR1346364
  26. [26] Šilhavý M., The Mechanics and Thermodynamics of Continuous Media, Springer, 1997. Zbl0870.73004MR1423807
  27. [27] Sivaloganathan J., Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rational Mech. Anal.96 (1986) 97-136. Zbl0628.73018MR853969
  28. [28] Sivaloganathan J., Spector S.J., On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity59 (2000) 83-113. Zbl0987.74016MR1833327
  29. [29] Stuart C.A., Radially symmetric cavitation for hyperelastic materials, Anal. Non Linéaire2 (1985) 33-66. Zbl0588.73021MR781591

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.