An asymmetric Neumann problem with weights

M. Arias; J. Campos; M. Cuesta; J.-P. Gossez

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 267-280
  • ISSN: 0294-1449

How to cite

top

Arias, M., et al. "An asymmetric Neumann problem with weights." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 267-280. <http://eudml.org/doc/78788>.

@article{Arias2008,
author = {Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Neumann problem; asymmetry; -Laplacian; weights; Fučik spectrum; Cerami (PS) condition},
language = {eng},
number = {2},
pages = {267-280},
publisher = {Elsevier},
title = {An asymmetric Neumann problem with weights},
url = {http://eudml.org/doc/78788},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Arias, M.
AU - Campos, J.
AU - Cuesta, M.
AU - Gossez, J.-P.
TI - An asymmetric Neumann problem with weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 267
EP - 280
LA - eng
KW - Neumann problem; asymmetry; -Laplacian; weights; Fučik spectrum; Cerami (PS) condition
UR - http://eudml.org/doc/78788
ER -

References

top
  1. [1] A. Anane, Etude des valeurs propres et de la résonance pour l'opérateur p-laplacien, Thèse de doctorat, Université Libre de Bruxelles, Bruxelles, 1988. 
  2. [2] Arias M., Campos J., Cuesta M., Gossez J.-P., Asymmetric elliptic problems with indefinite weights, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 581-616. Zbl1016.35054MR1922470
  3. [3] Cerami G., Un criterio di esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett.112 (1978) 332-336. Zbl0436.58006
  4. [4] Cuesta M., Eigenvalue problems for the p-laplacian with indefinite weight, Electronic J. Differential Equations2001 (2001) 1-9. Zbl0964.35110MR1836801
  5. [5] Cuesta M., Minimax theorems on C 1 manifolds via Ekeland variational principle, Abstract Appl. Anal.13 (2003) 757-768. Zbl1072.58004MR1996922
  6. [6] A. Dakkak, Etude sur le spectre et la résonance pour les problèmes elliptiques de Neumann, Thèse 3ème cycle, Univ. Oujda, 1995. 
  7. [7] De Figueiredo D., Lectures on the Ekeland Variational Principle with Applications and Detours, TATA Institute, Springer-Verlag, 1989. Zbl0688.49011MR1019559
  8. [8] Ekeland I., On the variational principle, J. Math. Anal. Appl.47 (1974) 323-353. Zbl0286.49015MR346619
  9. [9] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
  10. [10] Godoy T., Gossez J.-P., Paczka S., On the antimaximum principle for the p-laplacian with indefinite weight, Nonlinear Anal.: Theory Methods Appl.51 (2002) 449-467. Zbl1157.35445MR1942756
  11. [11] Huang Y.-X., On eigenvalue problems for the p-laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc.109 (1990) 177-184. Zbl0715.35061MR1010800
  12. [12] Lieberman G., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988) 1203-1219. Zbl0675.35042MR969499
  13. [13] Serrin J., Local behavior of solutions of quasilinear equations, Acta Math.111 (1962) 247-302. Zbl0128.09101MR170096
  14. [14] Vazquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12 (1984) 191-202. Zbl0561.35003MR768629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.