An asymmetric Neumann problem with weights
M. Arias; J. Campos; M. Cuesta; J.-P. Gossez
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 2, page 267-280
- ISSN: 0294-1449
Access Full Article
topHow to cite
topArias, M., et al. "An asymmetric Neumann problem with weights." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 267-280. <http://eudml.org/doc/78788>.
@article{Arias2008,
author = {Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Neumann problem; asymmetry; -Laplacian; weights; Fučik spectrum; Cerami (PS) condition},
language = {eng},
number = {2},
pages = {267-280},
publisher = {Elsevier},
title = {An asymmetric Neumann problem with weights},
url = {http://eudml.org/doc/78788},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Arias, M.
AU - Campos, J.
AU - Cuesta, M.
AU - Gossez, J.-P.
TI - An asymmetric Neumann problem with weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 267
EP - 280
LA - eng
KW - Neumann problem; asymmetry; -Laplacian; weights; Fučik spectrum; Cerami (PS) condition
UR - http://eudml.org/doc/78788
ER -
References
top- [1] A. Anane, Etude des valeurs propres et de la résonance pour l'opérateur p-laplacien, Thèse de doctorat, Université Libre de Bruxelles, Bruxelles, 1988.
- [2] Arias M., Campos J., Cuesta M., Gossez J.-P., Asymmetric elliptic problems with indefinite weights, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 581-616. Zbl1016.35054MR1922470
- [3] Cerami G., Un criterio di esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett.112 (1978) 332-336. Zbl0436.58006
- [4] Cuesta M., Eigenvalue problems for the p-laplacian with indefinite weight, Electronic J. Differential Equations2001 (2001) 1-9. Zbl0964.35110MR1836801
- [5] Cuesta M., Minimax theorems on manifolds via Ekeland variational principle, Abstract Appl. Anal.13 (2003) 757-768. Zbl1072.58004MR1996922
- [6] A. Dakkak, Etude sur le spectre et la résonance pour les problèmes elliptiques de Neumann, Thèse 3ème cycle, Univ. Oujda, 1995.
- [7] De Figueiredo D., Lectures on the Ekeland Variational Principle with Applications and Detours, TATA Institute, Springer-Verlag, 1989. Zbl0688.49011MR1019559
- [8] Ekeland I., On the variational principle, J. Math. Anal. Appl.47 (1974) 323-353. Zbl0286.49015MR346619
- [9] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
- [10] Godoy T., Gossez J.-P., Paczka S., On the antimaximum principle for the p-laplacian with indefinite weight, Nonlinear Anal.: Theory Methods Appl.51 (2002) 449-467. Zbl1157.35445MR1942756
- [11] Huang Y.-X., On eigenvalue problems for the p-laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc.109 (1990) 177-184. Zbl0715.35061MR1010800
- [12] Lieberman G., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988) 1203-1219. Zbl0675.35042MR969499
- [13] Serrin J., Local behavior of solutions of quasilinear equations, Acta Math.111 (1962) 247-302. Zbl0128.09101MR170096
- [14] Vazquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12 (1984) 191-202. Zbl0561.35003MR768629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.