Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger–Poisson systems in
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 449-470
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBenmlih, Khalid, and Kavian, Otared. "Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger–Poisson systems in ${R}^{3}$." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 449-470. <http://eudml.org/doc/78797>.
@article{Benmlih2008,
author = {Benmlih, Khalid, Kavian, Otared},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger equation; Poisson equation; standing wave solutions; variational methods; asymptotic behaviour},
language = {eng},
number = {3},
pages = {449-470},
publisher = {Elsevier},
title = {Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger–Poisson systems in $\{R\}^\{3\}$},
url = {http://eudml.org/doc/78797},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Benmlih, Khalid
AU - Kavian, Otared
TI - Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger–Poisson systems in ${R}^{3}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 449
EP - 470
LA - eng
KW - Schrödinger equation; Poisson equation; standing wave solutions; variational methods; asymptotic behaviour
UR - http://eudml.org/doc/78797
ER -
References
top- [1] Akhmediev N., Ankiewicz A., Soto-Crespo J.M., Does the nonlinear Schrödinger equation correctly describe beam propagation?, Optics Lett.18 (1993) 411-413.
- [2] Kh. Benmlih, Stationary solutions for a Schrödinger–Poisson system in , Electron. J. Differential Equations, Proceedings of Conf. 09 (2002), pp. 65–76.http://www.emis.de/journals/EJDE/. Zbl1109.35373MR1976685
- [3] Benmlih Kh., A note on a 3-dimensional stationary Schrödinger–Poisson system, Electron. J. Differential Equations2004 (26) (2004) 1-5. Zbl1217.35059MR2036210
- [4] Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl.58 (2) (1979) 137-151. Zbl0408.35025MR539217
- [5] Gilbard D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, second ed., Springer, Berlin, 1983. Zbl0562.35001MR737190
- [6] Hauss H.A., Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, 1984.
- [7] Illner R., Kavian O., Lange H., Stationary solutions of quasi-linear Schrödinger–Poisson systems, J. Differential Equations145 (1998) 1-16. Zbl0909.35133MR1620258
- [8] Illner R., Lange H., Toomire B., Zweifel P.F., On quasi-linear Schrödinger–Poisson systems, Math. Meth. Appl. Sci.20 (1997) 1223-1238. Zbl0886.35125MR1468411
- [9] Kavian O., Introduction à la Théorie des Points Critiques, Springer-Verlag, Berlin, 1993. Zbl0797.58005MR1276944
- [10] Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
- [11] Lions P.L., The concentration-compactness principle in the calculus of variations, the limit case, Part 1, Rev. Mat. Iberoamericana1 (1985) 145-201. Zbl0704.49005MR834360
- [12] Lions P.L., Some remarks on Hartree equations, Nonlinear Anal.5 (1981) 1245-1256. Zbl0472.35074MR636734
- [13] Markowich P.A., Ringhofer C., Schmeiser C., Semiconductor Equations, Springer, Wien, 1990. Zbl0765.35001MR1063852
- [14] Maz'ja V.G., Sobolev Spaces, Springer, Berlin, 1985.
- [15] Struwe M., Variational Methods, Application to Nonlinear PDE & Hamiltonian Systems, second ed., Springer, Berlin, 1996. Zbl0864.49001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.