Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights

Patrizia Pucci; Raffaella Servadei

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 3, page 505-537
  • ISSN: 0294-1449

How to cite

top

Pucci, Patrizia, and Servadei, Raffaella. "Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 505-537. <http://eudml.org/doc/78799>.

@article{Pucci2008,
author = {Pucci, Patrizia, Servadei, Raffaella},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasilinearsingular elliptic equations; weights; regularity; Pokhozhaev identity; mountain pass theorem},
language = {eng},
number = {3},
pages = {505-537},
publisher = {Elsevier},
title = {Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights},
url = {http://eudml.org/doc/78799},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Pucci, Patrizia
AU - Servadei, Raffaella
TI - Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 505
EP - 537
LA - eng
KW - quasilinearsingular elliptic equations; weights; regularity; Pokhozhaev identity; mountain pass theorem
UR - http://eudml.org/doc/78799
ER -

References

top
  1. [1] Abdellaoui B., Felli V., Peral I., Existence and non-existence results for quasilinear elliptic equations involving the p-Laplacian, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)9 (2) (2006) 445-484. Zbl1118.35010MR2233146
  2. [2] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy–Sobolev inequality and its application, Proc. Amer. Math. Soc.130 (2) (2001) 489-505. Zbl0987.35049MR1862130
  3. [3] Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
  4. [4] Berestycki H., Lions J.L., Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  5. [5] Berestycki H., Lions J.L., Nonlinear scalar field equations, II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal.82 (1983) 347-375. Zbl0556.35046MR695536
  6. [6] Boccardo L., Murat F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Theory Methods Appl.19 (6) (1992) 581-597. Zbl0783.35020MR1183665
  7. [7] Brézis H., Analyse Fonctionelle. Théorie et applications, Masson, Paris, 1983. Zbl0511.46001MR697382
  8. [8] Brézis H., Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (3) (1983) 486-490. Zbl0526.46037MR699419
  9. [9] Caffarelli L., Kohn R., Nirenberg L., First order inequalities with weights, Compos. Math.53 (1984) 259-275. Zbl0563.46024MR768824
  10. [10] Caldiroli P., Malchiodi A., Singular elliptic problems with critical growth, Commun. Partial Differential Equations27 (2002) 847-876. Zbl1072.35527MR1916550
  11. [11] Calzolari E., Filippucci R., Pucci P., Existence of radial solutions for the p-Laplacian elliptic equations with weights, Discrete Contin. Dyn. Syst.15 (2) (2006) 447-479. Zbl1163.35023MR2199439
  12. [12] Chaudhuri N., Ramaswamy M., Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Proc. R. Soc. Edinburgh Sect. A Math.131 (6) (2001) 1275-1295. Zbl0997.35020MR1869636
  13. [13] Citti G., Positive solutions for a quasilinear elliptic equation in R n , Rend. Circ. Mat. Palermo, II. Ser.35 (1986) 364-375. Zbl0659.35039MR929619
  14. [14] Clément Ph., Manásevich R., Mitidieri E., Some existence and non-existence results for a homogeneous quasilinear problem, Asymptotic Anal.17 (1998) 13-29. Zbl0945.34011MR1632708
  15. [15] Coleman S., Glaser V., Martin A., Action minima among solutions to a class of euclidean scalar field equations, Comm. Math. Phys.58 (1978) 211-221. MR468913
  16. [16] DiBenedetto E., C 1 + α -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl.7 (8) (1983) 827-850. Zbl0539.35027MR709038
  17. [17] Ekeland I., Ghoussoub N., Selected new aspects of the calculus of variations in the large, Bull. Am. Math. Soc. (N.S)39 (2) (2002) 207-265. Zbl1064.35054MR1886088
  18. [18] Ferrero A., Gazzola F., Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations177 (2001) 494-522. Zbl0997.35017MR1876652
  19. [19] Ferrero A., Gazzola F., On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations, Adv. Differential Equations8 (2003) 1081-1106. Zbl1290.35096MR1989290
  20. [20] García Azorero J.P., Peral I., Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations144 (1998) 441-476. Zbl0918.35052MR1616905
  21. [21] García Huidobro J.P., Manásevich R., Yarur C., On the structure of positive radial solutions to an equation containing a p-Laplacian with weight, J. Differential Equations223 (2006) 51-95. Zbl1170.35404MR2210139
  22. [22] Gazzola F., Serrin J., Tang M., Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Differential Equations5 (1–3) (2000) 1-30. Zbl0987.35064MR1734535
  23. [23] N. Ghoussoub, F. Robert, Concentration estimates for Emden–Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap. (2006), 21867, 1–85. Zbl1154.35049MR2210661
  24. [24] Ghoussoub N., Yuan C., Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc.352 (12) (2000) 5703-5743. Zbl0956.35056MR1695021
  25. [25] Goncalves J.V., Santos C.A.P., Positive solutions for a class of quasilinear singular equations, Electron. J. Differential Equations2004 (56) (2004) 1-15. Zbl1109.35309MR2047412
  26. [26] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965. Zbl0137.03202MR367121
  27. [27] E. Jannelli, S. Solimini, Critical behaviour of some elliptic equations with singular potentials, Rapporto n. 41, Università degli Studi di Bari, 1996. 
  28. [28] Kavian O., Introdution à la théorie des points critiques, Springer-Verlag, Paris, 1983. 
  29. [29] Kufner A., Persson L.E., Weighted Inequalities of Hardy-Type, Word Scientific, 2003. Zbl1065.26018MR1982932
  30. [30] Lay D.C., Taylor A.E., Introduction to Functional Analysis, John Wiley and Sons, New York, 1980. Zbl0501.46003MR564653
  31. [31] Li J., Equation with critical Sobolev–Hardy exponents, Int. J. Math. Math. Sci.20 (2005) 3213-3223. Zbl1119.35019MR2206527
  32. [32] Lieb E.H., Loss M., Analysis, Graduate Studies in Math., vol. 14, second ed., Amer. Math. Soc., 1997. Zbl0873.26002MR1415616
  33. [33] Lions P.L., The concentration–compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana1 (1985) 145-201. Zbl0704.49005MR834360
  34. [34] Mitidieri E., A simple approach to Hardy inequalities, Mat. Zametki67 (2000) 563-572, (in Russian); translation in, Math. Notes67 (2000) 479-486. Zbl0964.26010MR1769903
  35. [35] Ni W.-M., Serrin J., Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2)8 (Centenary Supplement) (1985) 171-185. Zbl0625.35028
  36. [36] Pucci P., García-Huidobro M., Manásevich R., Serrin J., Qualitative properties of ground states for singular elliptic equations with weights, Ann. Mat. Pura Appl. (4)185 (2006) 205-243. Zbl1115.35050MR2187761
  37. [37] Pucci P., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J.47 (1998) 501-528. Zbl0920.35054MR1647924
  38. [38] P. Pucci, J. Serrin, The Strong Maximum Principle, Progress in Nonlinear Differential Equations, Birkhäuser Publ., Switzerland, monograph book, pp. 206, in press. Zbl1134.35001MR2356201
  39. [39] Pucci P., Serrin J., Zou H., A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. (9)78 (1999) 769-789. Zbl0952.35045MR1715341
  40. [40] Pucci P., Servadei R., On weak solutions for p-Laplacian equations with weights, Rend. Lincei Mat. Appl.18 (2007) 257-267. Zbl1223.35128MR2318819
  41. [41] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations, submitted for publication. Zbl1171.35057
  42. [42] Ruiz D., Willem M., Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations190 (2003) 524-538. Zbl1163.35383MR1970040
  43. [43] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
  44. [44] Struwe M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, third ed., Springer-Verlag, Berlin, 2000. Zbl0939.49001MR1736116
  45. [45] Swanson C.A., Yu L.S., Critical p-Laplacian problems in R n , Ann. Mat. Pura Appl. (4)169 (1995) 233-250. Zbl0852.35044MR1378476
  46. [46] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908
  47. [47] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations1 (2) (1996) 241-264. Zbl0847.35045MR1364003
  48. [48] Vázquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optimization12 (1984) 191-202. Zbl0561.35003MR768629
  49. [49] Willem M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, 1996. Zbl0856.49001MR1400007
  50. [50] Xuan B., The solvability of quasilinear Brézis–Nirenberg-type problems wit singular weights, Nonlinear Anal., Theory Methods Appl.62 (2005) 703-725. Zbl1130.35061MR2149911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.