Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights
Patrizia Pucci; Raffaella Servadei
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 505-537
- ISSN: 0294-1449
Access Full Article
topHow to cite
topPucci, Patrizia, and Servadei, Raffaella. "Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 505-537. <http://eudml.org/doc/78799>.
@article{Pucci2008,
author = {Pucci, Patrizia, Servadei, Raffaella},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasilinearsingular elliptic equations; weights; regularity; Pokhozhaev identity; mountain pass theorem},
language = {eng},
number = {3},
pages = {505-537},
publisher = {Elsevier},
title = {Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights},
url = {http://eudml.org/doc/78799},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Pucci, Patrizia
AU - Servadei, Raffaella
TI - Existence, non-existence and regularity of radial ground states for p-laplacian equations with singular weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 505
EP - 537
LA - eng
KW - quasilinearsingular elliptic equations; weights; regularity; Pokhozhaev identity; mountain pass theorem
UR - http://eudml.org/doc/78799
ER -
References
top- [1] Abdellaoui B., Felli V., Peral I., Existence and non-existence results for quasilinear elliptic equations involving the p-Laplacian, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)9 (2) (2006) 445-484. Zbl1118.35010MR2233146
- [2] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy–Sobolev inequality and its application, Proc. Amer. Math. Soc.130 (2) (2001) 489-505. Zbl0987.35049MR1862130
- [3] Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
- [4] Berestycki H., Lions J.L., Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [5] Berestycki H., Lions J.L., Nonlinear scalar field equations, II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal.82 (1983) 347-375. Zbl0556.35046MR695536
- [6] Boccardo L., Murat F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Theory Methods Appl.19 (6) (1992) 581-597. Zbl0783.35020MR1183665
- [7] Brézis H., Analyse Fonctionelle. Théorie et applications, Masson, Paris, 1983. Zbl0511.46001MR697382
- [8] Brézis H., Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (3) (1983) 486-490. Zbl0526.46037MR699419
- [9] Caffarelli L., Kohn R., Nirenberg L., First order inequalities with weights, Compos. Math.53 (1984) 259-275. Zbl0563.46024MR768824
- [10] Caldiroli P., Malchiodi A., Singular elliptic problems with critical growth, Commun. Partial Differential Equations27 (2002) 847-876. Zbl1072.35527MR1916550
- [11] Calzolari E., Filippucci R., Pucci P., Existence of radial solutions for the p-Laplacian elliptic equations with weights, Discrete Contin. Dyn. Syst.15 (2) (2006) 447-479. Zbl1163.35023MR2199439
- [12] Chaudhuri N., Ramaswamy M., Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Proc. R. Soc. Edinburgh Sect. A Math.131 (6) (2001) 1275-1295. Zbl0997.35020MR1869636
- [13] Citti G., Positive solutions for a quasilinear elliptic equation in , Rend. Circ. Mat. Palermo, II. Ser.35 (1986) 364-375. Zbl0659.35039MR929619
- [14] Clément Ph., Manásevich R., Mitidieri E., Some existence and non-existence results for a homogeneous quasilinear problem, Asymptotic Anal.17 (1998) 13-29. Zbl0945.34011MR1632708
- [15] Coleman S., Glaser V., Martin A., Action minima among solutions to a class of euclidean scalar field equations, Comm. Math. Phys.58 (1978) 211-221. MR468913
- [16] DiBenedetto E., -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl.7 (8) (1983) 827-850. Zbl0539.35027MR709038
- [17] Ekeland I., Ghoussoub N., Selected new aspects of the calculus of variations in the large, Bull. Am. Math. Soc. (N.S)39 (2) (2002) 207-265. Zbl1064.35054MR1886088
- [18] Ferrero A., Gazzola F., Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations177 (2001) 494-522. Zbl0997.35017MR1876652
- [19] Ferrero A., Gazzola F., On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations, Adv. Differential Equations8 (2003) 1081-1106. Zbl1290.35096MR1989290
- [20] García Azorero J.P., Peral I., Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations144 (1998) 441-476. Zbl0918.35052MR1616905
- [21] García Huidobro J.P., Manásevich R., Yarur C., On the structure of positive radial solutions to an equation containing a p-Laplacian with weight, J. Differential Equations223 (2006) 51-95. Zbl1170.35404MR2210139
- [22] Gazzola F., Serrin J., Tang M., Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Differential Equations5 (1–3) (2000) 1-30. Zbl0987.35064MR1734535
- [23] N. Ghoussoub, F. Robert, Concentration estimates for Emden–Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap. (2006), 21867, 1–85. Zbl1154.35049MR2210661
- [24] Ghoussoub N., Yuan C., Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc.352 (12) (2000) 5703-5743. Zbl0956.35056MR1695021
- [25] Goncalves J.V., Santos C.A.P., Positive solutions for a class of quasilinear singular equations, Electron. J. Differential Equations2004 (56) (2004) 1-15. Zbl1109.35309MR2047412
- [26] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965. Zbl0137.03202MR367121
- [27] E. Jannelli, S. Solimini, Critical behaviour of some elliptic equations with singular potentials, Rapporto n. 41, Università degli Studi di Bari, 1996.
- [28] Kavian O., Introdution à la théorie des points critiques, Springer-Verlag, Paris, 1983.
- [29] Kufner A., Persson L.E., Weighted Inequalities of Hardy-Type, Word Scientific, 2003. Zbl1065.26018MR1982932
- [30] Lay D.C., Taylor A.E., Introduction to Functional Analysis, John Wiley and Sons, New York, 1980. Zbl0501.46003MR564653
- [31] Li J., Equation with critical Sobolev–Hardy exponents, Int. J. Math. Math. Sci.20 (2005) 3213-3223. Zbl1119.35019MR2206527
- [32] Lieb E.H., Loss M., Analysis, Graduate Studies in Math., vol. 14, second ed., Amer. Math. Soc., 1997. Zbl0873.26002MR1415616
- [33] Lions P.L., The concentration–compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana1 (1985) 145-201. Zbl0704.49005MR834360
- [34] Mitidieri E., A simple approach to Hardy inequalities, Mat. Zametki67 (2000) 563-572, (in Russian); translation in, Math. Notes67 (2000) 479-486. Zbl0964.26010MR1769903
- [35] Ni W.-M., Serrin J., Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2)8 (Centenary Supplement) (1985) 171-185. Zbl0625.35028
- [36] Pucci P., García-Huidobro M., Manásevich R., Serrin J., Qualitative properties of ground states for singular elliptic equations with weights, Ann. Mat. Pura Appl. (4)185 (2006) 205-243. Zbl1115.35050MR2187761
- [37] Pucci P., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J.47 (1998) 501-528. Zbl0920.35054MR1647924
- [38] P. Pucci, J. Serrin, The Strong Maximum Principle, Progress in Nonlinear Differential Equations, Birkhäuser Publ., Switzerland, monograph book, pp. 206, in press. Zbl1134.35001MR2356201
- [39] Pucci P., Serrin J., Zou H., A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. (9)78 (1999) 769-789. Zbl0952.35045MR1715341
- [40] Pucci P., Servadei R., On weak solutions for p-Laplacian equations with weights, Rend. Lincei Mat. Appl.18 (2007) 257-267. Zbl1223.35128MR2318819
- [41] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations, submitted for publication. Zbl1171.35057
- [42] Ruiz D., Willem M., Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations190 (2003) 524-538. Zbl1163.35383MR1970040
- [43] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
- [44] Struwe M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, third ed., Springer-Verlag, Berlin, 2000. Zbl0939.49001MR1736116
- [45] Swanson C.A., Yu L.S., Critical p-Laplacian problems in , Ann. Mat. Pura Appl. (4)169 (1995) 233-250. Zbl0852.35044MR1378476
- [46] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908
- [47] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations1 (2) (1996) 241-264. Zbl0847.35045MR1364003
- [48] Vázquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optimization12 (1984) 191-202. Zbl0561.35003MR768629
- [49] Willem M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, 1996. Zbl0856.49001MR1400007
- [50] Xuan B., The solvability of quasilinear Brézis–Nirenberg-type problems wit singular weights, Nonlinear Anal., Theory Methods Appl.62 (2005) 703-725. Zbl1130.35061MR2149911
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.