Singular limits for the bi-laplacian operator with exponential nonlinearity in R 4

Mónica Clapp; Claudio Muñoz; Monica Musso

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 1015-1041
  • ISSN: 0294-1449

How to cite

top

Clapp, Mónica, Muñoz, Claudio, and Musso, Monica. "Singular limits for the bi-laplacian operator with exponential nonlinearity in ${R}^{4}$." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 1015-1041. <http://eudml.org/doc/78814>.

@article{Clapp2008,
author = {Clapp, Mónica, Muñoz, Claudio, Musso, Monica},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Degenerating exponential nonlinearity; Variational structure; Blow-up},
language = {eng},
number = {5},
pages = {1015-1041},
publisher = {Elsevier},
title = {Singular limits for the bi-laplacian operator with exponential nonlinearity in $\{R\}^\{4\}$},
url = {http://eudml.org/doc/78814},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Clapp, Mónica
AU - Muñoz, Claudio
AU - Musso, Monica
TI - Singular limits for the bi-laplacian operator with exponential nonlinearity in ${R}^{4}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 1015
EP - 1041
LA - eng
KW - Degenerating exponential nonlinearity; Variational structure; Blow-up
UR - http://eudml.org/doc/78814
ER -

References

top
  1. [1] Adimurthi, Robert F., Struwe M., Concentration phenomena for Liouville's equation in dimension four, J. Eur. Math. Soc. (JEMS)8 (2) (2006) 171-180. Zbl05053356MR2239297
  2. [2] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (3) (1988) 253-294. Zbl0649.35033MR929280
  3. [3] Bahri A., Li Y.-Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var.3 (1) (1995) 67-93. Zbl0814.35032MR1384837
  4. [4] Baraket S., Dammak M., Pacard F., Ouni T., Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007) 875-895. Zbl1132.35038MR2371110
  5. [5] Baraket S., Pacard F., Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations6 (1) (1998) 1-38. Zbl0890.35047
  6. [6] Bartolucci D., Tarantello G., The Liouville equation with singular data: a concentration-compactness principle via a local representation formula, J. Differential Equations185 (1) (2002) 161-180. Zbl1247.35032
  7. [7] Branson T.P., Differential operators canonically associated to a conformal structure, Math. Scand.57 (1985) 293-345. Zbl0596.53009
  8. [8] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of - Δ u = V x e u in two dimensions, Comm. Partial Differential Equations16 (8–9) (1991) 1223-1253. Zbl0746.35006
  9. [9] S.Y.A. Chang, On a fourth order operator – the Paneitz operator – in conformal geometry, in: Proceedings of the Conference for the 70th of A.P. Calderon, in press. 
  10. [10] Chang S.Y.A., Yang P.C., On a fourth order curvature invariant, in: Branson T. (Ed.), Spectral Problems in Geometry and Arithmetic, Contemporary Math., vol. 237, Amer. Math. Soc., 1999, pp. 9-28. Zbl0982.53035MR1710786
  11. [11] Chen C.-C., Lin C.-S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (12) (2003) 1667-1727. Zbl1032.58010MR2001443
  12. [12] del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. Partial Differential Equations16 (2) (2003) 113-145. Zbl1142.35421MR1956850
  13. [13] del Pino M., Dolbeault J., Musso M., “Bubble-tower” radial solutions in the slightly supercritical Brezis–Nirenberg problem, J. Differential Equations193 (2) (2003) 280-306. Zbl1140.35413MR1998635
  14. [14] del Pino M., Kowalczyk M., Musso M., Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations24 (2005) 47-81. Zbl1088.35067MR2157850
  15. [15] del Pino M., Kowalczyk M., Musso M., Variational reduction for Ginzburg–Landau vortices, J. Funct. Anal.239 (2) (2006) 497-541. Zbl05083435MR2261336
  16. [16] del Pino M., Muñoz C., The two-dimensional Lazer–McKenna conjecture for an exponential nonlinearity, J. Differential Equations231 (2006) 108-134. Zbl1159.35372MR2287880
  17. [17] Dold A., Lectures on Algebraic Topology, Springer-Verlag, Berlin, 1972. Zbl0234.55001MR415602
  18. [18] Druet O., Robert F., Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc.134 (3) (2006) 897-908. Zbl1083.58018MR2180908
  19. [19] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. Math., in press. Zbl1186.53050
  20. [20] P. Esposito, A class of Liouville-type equations arising in Chern–Simons vortex theory: asymptotics and construction of blowing-up solutions, Ph.D. Thesis, Universitá di Roma “Tor Vergata”, 2004. 
  21. [21] Esposito P., Grossi M., Pistoia A., On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2) (2005) 227-257. Zbl1129.35376MR2124164
  22. [22] Esposito P., Musso M., Pistoia A., Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations227 (1) (2006) 29-68. Zbl1254.35083MR2233953
  23. [23] Kazdan J., Warner F., Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. Math.101 (1975) 317-331. Zbl0297.53020MR375153
  24. [24] Li Y.-Y., Shafrir I., Blow-up analysis for solutions of - Δ u = V e u in dimension two, Indiana Univ. Math. J.43 (4) (1994) 1255-1270. Zbl0842.35011MR1322618
  25. [25] Liouville J., Sur l’equation aux difference partielles d 2 log λ d u d v ± λ 2 a 2 = 0 , C. R. Acad. Sci. Paris36 (1853) 71-72. 
  26. [26] Lin C.S., Wei J., Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math.56 (6) (2003) 784-809. Zbl1121.35310MR1959740
  27. [27] C.S. Lin, J. Wei, Sharp estimates for bubbling solutions of a fourth order mean field equation, Preprint, 2007. Zbl1185.35067MR2394412
  28. [28] C.S. Lin, L.P. Wang, J. Wei, Topological degree for solutions of a fourth order mean field equation, Preprint, 2007. 
  29. [29] Ma L., Wei J., Convergence for a Liouville equation, Comment. Math. Helv.76 (3) (2001) 506-514. Zbl0987.35056MR1854696
  30. [30] Malchiodi A., Struwe M., Q-curvature flow on S 4 , J. Differential Geom.73 (1) (2006) 1-44. Zbl1099.53034MR2217518
  31. [31] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal.3 (2) (1990) 173-188. Zbl0726.35011MR1061665
  32. [32] Paneitz S., Essential unitarization of symplectics and applications to field quantization, J. Funct. Anal.48 (1982) 310-359. Zbl0499.47025MR678176
  33. [33] Pistoia A., Rey O., Multiplicity of solutions to the supercritical Bahri–Coron's problem in pierced domains, Adv. Differential Equations11 (6) (2006) 647-666. Zbl1166.35333MR2238023
  34. [34] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1) (1990) 1-52. Zbl0786.35059MR1040954
  35. [35] Suzuki T., Two-dimensional Emden–Fowler equation with exponential nonlinearity, in: Nonlinear Diffusion Equations and their Equilibrium States, 3, Gregynog, 1989, Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992. Zbl0792.35061MR1167859
  36. [36] Tarantello G., A quantization property for blow-up solutions of singular Liouville-type equations, J. Funct. Anal.219 (2) (2005) 368-399. Zbl1174.35379MR2109257
  37. [37] Tarantello G., Analytical aspects of Liouville-type equations with singular sources, in: Stationary Partial Differential Equations, vol. I, Handbook of Differential Equations, North-Holland, Amsterdam, 2004, pp. 491-592. Zbl1129.35408MR2103693
  38. [38] Weston V.H., On the asymptotic solution of a partial differential equation with an exponential nonlinearity, SIAM J. Math. Anal.9 (6) (1978) 1030-1053. Zbl0402.35038MR512508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.