On the existence of blowing-up solutions for a mean field equation
Pierpaolo Esposito; Massimo Grossi; Angela Pistoia
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 2, page 227-257
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEsposito, Pierpaolo, Grossi, Massimo, and Pistoia, Angela. "On the existence of blowing-up solutions for a mean field equation." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 227-257. <http://eudml.org/doc/78655>.
@article{Esposito2005,
author = {Esposito, Pierpaolo, Grossi, Massimo, Pistoia, Angela},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mean field equation; peak solutions; Green's function},
language = {eng},
number = {2},
pages = {227-257},
publisher = {Elsevier},
title = {On the existence of blowing-up solutions for a mean field equation},
url = {http://eudml.org/doc/78655},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Esposito, Pierpaolo
AU - Grossi, Massimo
AU - Pistoia, Angela
TI - On the existence of blowing-up solutions for a mean field equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 227
EP - 257
LA - eng
KW - mean field equation; peak solutions; Green's function
UR - http://eudml.org/doc/78655
ER -
References
top- [1] Ambrosetti A., Garcia Azorero J., Peral I., Perturbation of , the scalar curvature problem in , and related topics, J. Funct. Anal.165 (1999) 117-149. Zbl0938.35056MR1696454
- [2] Aubin T., Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998. Zbl0896.53003MR1636569
- [3] Bahri A., Critical Point at Infinity in Some Variational Problems, Pitman Research Notes Math., vol. 182, Longman House, Harlow, 1989. Zbl0676.58021MR1019828
- [4] Bandle C., Isoperimetric Inequalities and Applications, Pitman Monographs Studies Math., vol. 7, Pitman, 1980. Zbl0436.35063MR572958
- [5] Baraket S., Pacard F., Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations6 (1998) 1-38. Zbl0890.35047MR1488492
- [6] Bebernes J., Eberly D., Mathematical Problems from Combustion Theory, Springer, Berlin, 1989. Zbl0692.35001MR1012946
- [7] Bianchi G., Egnell H., A note on the Sobolev inequality, J. Funct. Anal.100 (1991) 18-24. Zbl0755.46014MR1124290
- [8] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
- [9] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys.143 (1992) 501-525. Zbl0745.76001MR1145596
- [10] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Comm. Math. Phys.174 (1995) 229-260. Zbl0840.76002MR1362165
- [11] Chae D., Imanuvilov O., The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys.215 (2000) 119-142. Zbl1002.58015MR1800920
- [12] D. Chae, G. Tarantello, On planar electroweak vortices, Ann. Inst. H. Poincaré Analyse Non Linéaire, in press.
- [13] Chandrasekhar S., An Introduction to the Study of Stellar Structure, Dover, New York, 1957. Zbl0079.23901MR92663
- [14] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
- [15] Chen C.C., Lin C.S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (2003) 1667-1727. Zbl1032.58010MR2001443
- [16] Chen C.C., Lin C.S., On the simmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Analyse Non Linéaire18 (2001) 271-296. Zbl0995.35004MR1831657
- [17] M. Del Pino, M. Kowalczyk, M. Musso, Singular limits in Liouville-type equation, preprint. Zbl1088.35067MR2157850
- [18] Dancer E.N., On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math.25 (1995) 957-975. Zbl0846.35046MR1357103
- [19] Ding W., Jost J., Li J., Wang G., Existence results for mean field equations, Ann. Inst. H. Poincaré Analyse Non Linéaire16 (1999) 653-666. Zbl0937.35055MR1712560
- [20] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. Zbl1065.35112MR2033557
- [21] P. Esposito, Blow up solutions for a Liouville equation with singular data, preprint, 2003. MR2172566
- [22] P. Esposito, A class of Liouville-type equations arising in Chern–Simons vortex theory: asymptotics and construction of blowing up solutions, Thesis, Roma “Tor Vergata”, 2003.
- [23] Gelfand I.M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl.29 (1969) 295-381. Zbl0127.04901MR153960
- [24] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [25] Grossi M., Pistoia A., On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations5 (2000) 1397-1420. Zbl0989.35054MR1785679
- [26] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Differential Equations2 (1997) 955-980. Zbl1023.35500MR1606351
- [27] Liouville J., Sur l’équation aud dérivées partielles , J. Math.18 (1853) 71-72.
- [28] Ma L., Wei J., Convergence for a Liouville equation, Comment. Math. Helv.76 (2001) 506-514. Zbl0987.35056MR1854696
- [29] Mizoguchi N., Suzuki T., Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations134 (1997) 183-215. Zbl0876.35037MR1432094
- [30] Moseley J.L., Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal.14 (1983) 719-735. Zbl0524.35046MR704487
- [31] Moseley J.L., A two-dimensional Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal.14 (1983) 934-946. Zbl0543.35036MR711174
- [32] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1970/71) 1077-1092. Zbl0213.13001MR301504
- [33] Musso M., Pistoia A., Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J.51 (2002) 541-579. Zbl1074.35037MR1911045
- [34] Murrey J.D., Mathematical Biology, Springer, Berlin, 1989.
- [35] Nagasaki K., Suzuki T., Asymptotic analysis for a two dimensional elliptic eigenvalue problem with exponentially dominated nonlinearity, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
- [36] Nolasco M., Non-topological N-vortex condensates for the self-dual Chern–Simons theory, Comm. Pure Appl. Math.56 (2003) 1752-1780. Zbl1032.58005MR2001445
- [37] Rey O., The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
- [38] Suzuki T., Two dimensional Emden–Fowler equation with exponential nonlinearity, Nonlinear Diffusion Equations and their Equilibrium States3 (1992) 493-512. Zbl0792.35061MR1167859
- [39] Suzuki T., Global analysis for a two-dimensional eigenvalue problem with exponential nonlinearity, Ann. Inst. H. Poincaré Analyse Non Linéaire9 (1992) 367-398. Zbl0785.35045MR1186683
- [40] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.17 (1967) 473-483. Zbl0163.36402MR216286
- [41] Weston V.H., On the asymptotic solution of a partial differential equation with exponential nonlinearity, SIAM J. Math. Anal.9 (1978) 1030-1053. Zbl0402.35038MR512508
Citations in EuDML Documents
top- Juncheng Wei, Dong Ye, Feng Zhou, Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler equation
- Sami Baraket, Makkia Dammak, Taieb Ouni, Frank Pacard, Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity
- Mónica Clapp, Claudio Muñoz, Monica Musso, Singular limits for the bi-laplacian operator with exponential nonlinearity in
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.