On the existence of blowing-up solutions for a mean field equation

Pierpaolo Esposito; Massimo Grossi; Angela Pistoia

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 2, page 227-257
  • ISSN: 0294-1449

How to cite

top

Esposito, Pierpaolo, Grossi, Massimo, and Pistoia, Angela. "On the existence of blowing-up solutions for a mean field equation." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 227-257. <http://eudml.org/doc/78655>.

@article{Esposito2005,
author = {Esposito, Pierpaolo, Grossi, Massimo, Pistoia, Angela},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mean field equation; peak solutions; Green's function},
language = {eng},
number = {2},
pages = {227-257},
publisher = {Elsevier},
title = {On the existence of blowing-up solutions for a mean field equation},
url = {http://eudml.org/doc/78655},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Esposito, Pierpaolo
AU - Grossi, Massimo
AU - Pistoia, Angela
TI - On the existence of blowing-up solutions for a mean field equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 227
EP - 257
LA - eng
KW - mean field equation; peak solutions; Green's function
UR - http://eudml.org/doc/78655
ER -

References

top
  1. [1] Ambrosetti A., Garcia Azorero J., Peral I., Perturbation of Δ u + u ( N + 2 ) / ( N - 2 ) = 0 , the scalar curvature problem in R N , and related topics, J. Funct. Anal.165 (1999) 117-149. Zbl0938.35056MR1696454
  2. [2] Aubin T., Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998. Zbl0896.53003MR1636569
  3. [3] Bahri A., Critical Point at Infinity in Some Variational Problems, Pitman Research Notes Math., vol. 182, Longman House, Harlow, 1989. Zbl0676.58021MR1019828
  4. [4] Bandle C., Isoperimetric Inequalities and Applications, Pitman Monographs Studies Math., vol. 7, Pitman, 1980. Zbl0436.35063MR572958
  5. [5] Baraket S., Pacard F., Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations6 (1998) 1-38. Zbl0890.35047MR1488492
  6. [6] Bebernes J., Eberly D., Mathematical Problems from Combustion Theory, Springer, Berlin, 1989. Zbl0692.35001MR1012946
  7. [7] Bianchi G., Egnell H., A note on the Sobolev inequality, J. Funct. Anal.100 (1991) 18-24. Zbl0755.46014MR1124290
  8. [8] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of - Δ u = V x 0 e x 0 e x e u in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
  9. [9] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys.143 (1992) 501-525. Zbl0745.76001MR1145596
  10. [10] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Comm. Math. Phys.174 (1995) 229-260. Zbl0840.76002MR1362165
  11. [11] Chae D., Imanuvilov O., The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys.215 (2000) 119-142. Zbl1002.58015MR1800920
  12. [12] D. Chae, G. Tarantello, On planar electroweak vortices, Ann. Inst. H. Poincaré Analyse Non Linéaire, in press. 
  13. [13] Chandrasekhar S., An Introduction to the Study of Stellar Structure, Dover, New York, 1957. Zbl0079.23901MR92663
  14. [14] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
  15. [15] Chen C.C., Lin C.S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math.56 (2003) 1667-1727. Zbl1032.58010MR2001443
  16. [16] Chen C.C., Lin C.S., On the simmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Analyse Non Linéaire18 (2001) 271-296. Zbl0995.35004MR1831657
  17. [17] M. Del Pino, M. Kowalczyk, M. Musso, Singular limits in Liouville-type equation, preprint. Zbl1088.35067MR2157850
  18. [18] Dancer E.N., On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math.25 (1995) 957-975. Zbl0846.35046MR1357103
  19. [19] Ding W., Jost J., Li J., Wang G., Existence results for mean field equations, Ann. Inst. H. Poincaré Analyse Non Linéaire16 (1999) 653-666. Zbl0937.35055MR1712560
  20. [20] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. Zbl1065.35112MR2033557
  21. [21] P. Esposito, Blow up solutions for a Liouville equation with singular data, preprint, 2003. MR2172566
  22. [22] P. Esposito, A class of Liouville-type equations arising in Chern–Simons vortex theory: asymptotics and construction of blowing up solutions, Thesis, Roma “Tor Vergata”, 2003. 
  23. [23] Gelfand I.M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl.29 (1969) 295-381. Zbl0127.04901MR153960
  24. [24] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
  25. [25] Grossi M., Pistoia A., On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations5 (2000) 1397-1420. Zbl0989.35054MR1785679
  26. [26] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Differential Equations2 (1997) 955-980. Zbl1023.35500MR1606351
  27. [27] Liouville J., Sur l’équation aud dérivées partielles 2 log λ / u v ± 2 λ a 2 = 0 , J. Math.18 (1853) 71-72. 
  28. [28] Ma L., Wei J., Convergence for a Liouville equation, Comment. Math. Helv.76 (2001) 506-514. Zbl0987.35056MR1854696
  29. [29] Mizoguchi N., Suzuki T., Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations134 (1997) 183-215. Zbl0876.35037MR1432094
  30. [30] Moseley J.L., Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal.14 (1983) 719-735. Zbl0524.35046MR704487
  31. [31] Moseley J.L., A two-dimensional Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal.14 (1983) 934-946. Zbl0543.35036MR711174
  32. [32] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1970/71) 1077-1092. Zbl0213.13001MR301504
  33. [33] Musso M., Pistoia A., Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J.51 (2002) 541-579. Zbl1074.35037MR1911045
  34. [34] Murrey J.D., Mathematical Biology, Springer, Berlin, 1989. 
  35. [35] Nagasaki K., Suzuki T., Asymptotic analysis for a two dimensional elliptic eigenvalue problem with exponentially dominated nonlinearity, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
  36. [36] Nolasco M., Non-topological N-vortex condensates for the self-dual Chern–Simons theory, Comm. Pure Appl. Math.56 (2003) 1752-1780. Zbl1032.58005MR2001445
  37. [37] Rey O., The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  38. [38] Suzuki T., Two dimensional Emden–Fowler equation with exponential nonlinearity, Nonlinear Diffusion Equations and their Equilibrium States3 (1992) 493-512. Zbl0792.35061MR1167859
  39. [39] Suzuki T., Global analysis for a two-dimensional eigenvalue problem with exponential nonlinearity, Ann. Inst. H. Poincaré Analyse Non Linéaire9 (1992) 367-398. Zbl0785.35045MR1186683
  40. [40] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.17 (1967) 473-483. Zbl0163.36402MR216286
  41. [41] Weston V.H., On the asymptotic solution of a partial differential equation with exponential nonlinearity, SIAM J. Math. Anal.9 (1978) 1030-1053. Zbl0402.35038MR512508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.