Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries
Jochen Denzler; Robert J. McCann
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 5, page 865-888
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDenzler, Jochen, and McCann, Robert J.. "Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 865-888. <http://eudml.org/doc/78817>.
@article{Denzler2008,
author = {Denzler, Jochen, McCann, Robert J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {porous medium equation; asymptotic dynamics; Barenblatt solutions},
language = {eng},
number = {5},
pages = {865-888},
publisher = {Elsevier},
title = {Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries},
url = {http://eudml.org/doc/78817},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Denzler, Jochen
AU - McCann, Robert J.
TI - Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 865
EP - 888
LA - eng
KW - porous medium equation; asymptotic dynamics; Barenblatt solutions
UR - http://eudml.org/doc/78817
ER -
References
top- [1] Ambrosio L.A., Gigli N., Savaré G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lecture Notes in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. Zbl1090.35002MR2129498
- [2] Angenent S.B., Large time asymptotics for the porous medium equation, in: Nonlinear Diffusion Equations and their Equilibrium States I, Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 21-34. Zbl0669.35048MR956056
- [3] Angenent S.B., Aronson D.G., Optimal asymptotics for solutions to the initial value problem for the porous medium equation, in: Angell T.S., (Eds.), Nonlinear Problems in Applied Mathematics: in honor of Professor Ivar Stakgold on his 70th birthday, Society for Industrial and Applied Mathematics, Philadelphia, 1996, pp. 10-19. Zbl0886.35112MR2410593
- [4] Angenent S.B., Aronson D.G., Non-axial self-similar hole filling for the porous medium equation, J. Amer. Math. Soc.14 (2001) 737-782. Zbl0973.35115MR1839916
- [5] Angenent S.B., Aronson D.G., Betelú S.I., Lowengrub J.S., Focusing of an elongated hole in porous medium flow, Physica D151 (2001) 228-252. Zbl0989.35082MR1834047
- [6] Aronson D.G., Graveleau J., A self-similar solution to the focusing problem for the porous medium equation, Eur. J. Appl. Math.4 (1993) 65-81. Zbl0780.35079MR1208420
- [7] Aronson D.G., Bouwe van den Berg J., Hulshof J., Parametric dependence of exponents and eigenvalues in focusing porous media flows, Eur. J. Appl. Math.14 (2003) 485-512. Zbl1052.76065MR1999136
- [8] Barenblatt G.I., On some unsteady motions of a liquid or gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Mekh.16 (1952) 67-78. Zbl0049.41902MR46217
- [9] Barenblatt G.I., Scaling, Cambridge University Press, Cambridge, 2003. Zbl1094.00006MR2034052
- [10] Barenblatt G.I., Bertsch M., Chertock A.E., Prostokishin V.M., Self-similar intermediate asymptotics for a degenerate parabolic filtration absorption equation, Proc. Natl. Acad. Sci. USA97 (2000) 9844-9848. Zbl0966.35069MR1773834
- [11] Bernis F., Friedman A., Higher order nonlinear degenerate parabolic equations, J. Differential Equations83 (1990) 179-206. Zbl0702.35143MR1031383
- [12] Bernoff A.J., Witelski T.P., Linear stability of source-type similarity solutions of the thin film equation, Appl. Math. Lett.15 (2002) 599-606. Zbl1016.76031MR1889510
- [13] Bertozzi A.L., Pugh M.C., Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J.49 (2000) 1323-1366. Zbl0978.35007MR1836532
- [14] Bertsch M., Dal Passo R., Garcke H., Grün G., The thin viscous flow equation in higher space dimensions, Adv. Differential Equations3 (1998) 417-440. Zbl0954.35035MR1751951
- [15] Bertsch M., Dal Passo R., Ughi M., Discontinuous ‘viscosity’ solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc.320 (1990) 779-798. Zbl0714.35039MR965742
- [16] Bertsch M., Dal Passo R., Ughi M., Nonuniqueness of solutions of a degenerate parabolic equation, Ann. Mat. Pura Appl.161 (4) (1992) 57-81. Zbl0796.35083MR1174811
- [17] Bertsch M., Ughi M., Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal.14 (1990) 571-592. Zbl0702.35044MR1044287
- [18] Betelú S., King J.R., Explicit solutions of a two-dimensional fourth order nonlinear diffusion equation, Math. Comput. Modelling37 (2003) 395-403. Zbl1028.35037MR1961181
- [19] Cáceres M.J., Toscani G., Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys.128 (2007) 883-925. Zbl1131.82030MR2344717
- [20] Cáceres M.J., Carrillo J.A., Toscani G., Long-time behavior for a nonlinear fourth-order parabolic equation, Trans. Amer. Math. Soc.357 (2005) 1161-1175. Zbl1077.35028MR2110436
- [21] Carrillo J.A., Toscani G., Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys.225 (2002) 551-571. Zbl0990.35054MR1888873
- [22] Carrillo J.A., Jüngel A., Markowich P.A., Toscani G., Unterreiter A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math.133 (2001) 1-82. Zbl0984.35027MR1853037
- [23] Carrillo J.A., Toscani G., Asymptotic -decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J.49 (2000) 113-141. Zbl0963.35098MR1777035
- [24] Carrillo J.A., Vázquez J.L., Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations28 (2003) 1023-1056. Zbl1036.35100MR1986060
- [25] Carrillo J.A., Di Francesco M., Toscani G., Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc.135 (2007) 353-363. Zbl1125.35053MR2255281
- [26] Carrillo J.A., McCann R.J., Villani C., Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rational Mech. Anal.179 (2006) 217-263. Zbl1082.76105MR2209130
- [27] Chasseigne E., Vázquez J.L., Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Rational Mech. Anal.164 (2002) 133-187. Zbl1018.35048MR1929929
- [28] Chertock A., On the stability of a class of self-similar solutions to the filtration-absorption equation, Eur. J. Appl. Math.13 (2002) 179-194. Zbl1056.35018MR1896227
- [29] Chow B., Knopf D., The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004. Zbl1086.53085MR2061425
- [30] Dal Passo R., Luckhaus S., A degenerate diffusion problem not in divergence form, J. Differential Equations69 (1987) 1-14. Zbl0688.35045MR897437
- [31] Del Pino M., Dolbeault J., Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl.81 (2002) 847-875. Zbl1112.35310MR1940370
- [32] Denzler J., McCann R.J., Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA100 (2003) 6922-6925. Zbl1076.35055MR1982656
- [33] Denzler J., McCann R.J., Fast diffusion to self-similarity: complete spectrum, long time asymptotics, and numerology, Arch. Rational Mech. Anal.175 (2005) 301-342. Zbl1083.35074MR2126633
- [34] Derrida B., Lebowitz J.L., Speer E., Spohn H., Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett.67 (1991) 165-168. Zbl0990.82520MR1113639
- [35] Diez J.A., Thomas L.P., Betelú S., Gratton R., Marino B., Gratton J., Aronson D.G., Angenent S.B., Noncircular converging flows in viscous gravity currents, Phys. Rev. E58 (1998) 6182-6187.
- [36] Friedman A., Kamin S., The asymptotic behaviour of a gas in an n-dimensional porous medium, Trans. Amer. Math. Soc.262 (1980) 551-563. Zbl0447.76076MR586735
- [37] Galaktionov V.A., Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A125 (1993) 225-246. Zbl0824.35128MR1331559
- [38] L. Giacomelli, H. Knüpfer, Flat data solutions to the thin film equation do not rupture, Preprint SFB 611, n. 283, 2006.
- [39] Giacomelli L., Otto F., Variational formulation for the lubrication approximation of the Hele–Shaw flow, Calc. Var. Partial Differential Equations13 (2001) 377-404. Zbl1086.35004MR1865003
- [40] Giacomelli L., Otto F., Rigorous lubrication approximation, Interfaces Free Bound5 (2003) 483-529. Zbl1039.76012MR2031467
- [41] U. Gianazza, G. Savaré, G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Preprint at http://www.imati.cnr.it/~savare/pubblicazioni/preprints.html. Zbl1223.35264MR2533926
- [42] J. Graveleau, Quelques solutions auto-semblables pour l'équation dela chaleur non-linéaire, Rapport Interne C.E.A., 1972.
- [43] A. Jüngel, D. Matthes, The Derrida–Lebowitz–Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions, SIAM J. Math. Anal. (2007), in press. Zbl1160.35428
- [44] Jüngel A., Pinnau R., Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal.32 (2000) 760-777. Zbl0979.35061MR1814737
- [45] Kim Y.J., McCann R.J., Sharp decay rates for the fastest conservative diffusions, C. R. Acad. Sci. Paris, Ser. I341 (2005) 157-162. Zbl1073.35132MR2158837
- [46] Kim Y.J., McCann R.J., Potential theory and optimal convergence rates in fast nonlinear diffusion, J. Math Pures Appl.86 (2006) 42-67. Zbl1112.35025MR2246356
- [47] King J.R., Exact multidimensional solutions to some nonlinear diffusion equations, Quart. J. Mech. Appl. Math.46 (1993) 419-436. Zbl0818.35015MR1233988
- [48] Laugesen R.S., Pugh M.C., Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differential Equations95 (2002) 1-29. Zbl1029.35121MR1938391
- [49] Lieb E.H., Loss M., Analysis, American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
- [50] McCann R.J., Slepčev D., Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not.24947 (2006) 1-22. Zbl1130.35080MR2211152
- [51] Myers T.G., Thin films with high surface tension, SIAM Rev.40 (1998) 441-462. Zbl0908.35057MR1642807
- [52] Oron A., Davis S.H., Bankoff S.G., Long-scale evolution of thin liquid films, Rev. Modern Phys.69 (1997) 931-980.
- [53] Otto F., Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations23 (1998) 2077-2164. Zbl0923.35211MR1662172
- [54] Otto F., The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations26 (2001) 101-174. Zbl0984.35089MR1842429
- [55] Pattle R.E., Diffusion from an instantaneous point source with concentration dependent coefficient, Quart. J. Mech. Appl. Math.12 (1959) 407-409. Zbl0119.30505MR114505
- [56] Pukhnachev V.V., Exact multidimensional solutions of the nonlinear diffusion equation, J. Appl. Mech. Tech. Phys.36 (1995) 169-176. Zbl0933.35113MR1349298
- [57] Rudykh G.A., Semenov E.I., The construction of exact solutions of the multi-dimensional quasilinear heat-conduction equation, Comp. Math. Math. Phys.33 (1993) 1087-1097. Zbl0799.35113MR1234033
- [58] Slepčev D., Pugh M.C., Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J.54 (2005) 1697-1738. Zbl1091.35071MR2189683
- [59] L. Tartar, Solutions particulières de et comportement asymptotique, Unpublished, 1986.
- [60] Toscani G., A central limit theorem for solutions of the porous medium equation, J. Evol. Equ.5 (2005) 185-203. Zbl1082.35091MR2133441
- [61] Ughi M., A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl.143 (4) (1986) 385-400. Zbl0617.35066MR859613
- [62] Vazquez J.L., Asymptotic behaviour and propagation of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc.277 (1983) 507-527. Zbl0528.76096MR694373
- [63] Vázquez J.L., An introduction to the mathematical theory of the porous medium equation, in: Shape Optimization and Free Boundaries, Montreal, PQ, 1990, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 380, Kluwer Acad. Publ., 1992, pp. 347-389. Zbl0765.76086MR1260981
- [64] Vázquez J.L., Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ.3 (2003) 67-118. Zbl1036.35108MR1977429
- [65] Vázquez J.L., The Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. Zbl1107.35003MR2286292
- [66] Walter W., Ordinary Differential Equations, Translated from the Sixth German (1996) Edition by Russell Thompson, Springer-Verlag, New York, 1998. Zbl0991.34001MR1629775
- [67] Zel'dovich Ya.B., Barenblatt G.I., The asymptotic properties of self-modelling solutions of the nonstationary gas filtration equations, Sov. Phys. Doklady3 (1989) 44-47.
- [68] Zel'dovich Ya.B., Kompaneets A.S., Theory of heat transfer with temperature dependent thermal conductivity, in: Collection in Honour of the 70th Birthday of Academician A.F. Ioffe, Izdat. Akad. Nauk. SSSR, Moscow, 1950, pp. 61-71.
- [69] Titov S.S., Ustinov V.A., Investigation of polynomial solutions of the two-dimensional Leibenzon filtration equation with an integer adiabatic exponent, in: Sidorov A.F., Vershinin S.V. (Eds.), Approximate Methods for Solving Boundary Value Problems of Continuum Mechanics, vol. 91, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1985, pp. 64-70, (in Russian). MR857985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.