Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries

Jochen Denzler; Robert J. McCann

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 865-888
  • ISSN: 0294-1449

How to cite

top

Denzler, Jochen, and McCann, Robert J.. "Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 865-888. <http://eudml.org/doc/78817>.

@article{Denzler2008,
author = {Denzler, Jochen, McCann, Robert J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {porous medium equation; asymptotic dynamics; Barenblatt solutions},
language = {eng},
number = {5},
pages = {865-888},
publisher = {Elsevier},
title = {Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries},
url = {http://eudml.org/doc/78817},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Denzler, Jochen
AU - McCann, Robert J.
TI - Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 865
EP - 888
LA - eng
KW - porous medium equation; asymptotic dynamics; Barenblatt solutions
UR - http://eudml.org/doc/78817
ER -

References

top
  1. [1] Ambrosio L.A., Gigli N., Savaré G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lecture Notes in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. Zbl1090.35002MR2129498
  2. [2] Angenent S.B., Large time asymptotics for the porous medium equation, in: Nonlinear Diffusion Equations and their Equilibrium States I, Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 21-34. Zbl0669.35048MR956056
  3. [3] Angenent S.B., Aronson D.G., Optimal asymptotics for solutions to the initial value problem for the porous medium equation, in: Angell T.S., (Eds.), Nonlinear Problems in Applied Mathematics: in honor of Professor Ivar Stakgold on his 70th birthday, Society for Industrial and Applied Mathematics, Philadelphia, 1996, pp. 10-19. Zbl0886.35112MR2410593
  4. [4] Angenent S.B., Aronson D.G., Non-axial self-similar hole filling for the porous medium equation, J. Amer. Math. Soc.14 (2001) 737-782. Zbl0973.35115MR1839916
  5. [5] Angenent S.B., Aronson D.G., Betelú S.I., Lowengrub J.S., Focusing of an elongated hole in porous medium flow, Physica D151 (2001) 228-252. Zbl0989.35082MR1834047
  6. [6] Aronson D.G., Graveleau J., A self-similar solution to the focusing problem for the porous medium equation, Eur. J. Appl. Math.4 (1993) 65-81. Zbl0780.35079MR1208420
  7. [7] Aronson D.G., Bouwe van den Berg J., Hulshof J., Parametric dependence of exponents and eigenvalues in focusing porous media flows, Eur. J. Appl. Math.14 (2003) 485-512. Zbl1052.76065MR1999136
  8. [8] Barenblatt G.I., On some unsteady motions of a liquid or gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Mekh.16 (1952) 67-78. Zbl0049.41902MR46217
  9. [9] Barenblatt G.I., Scaling, Cambridge University Press, Cambridge, 2003. Zbl1094.00006MR2034052
  10. [10] Barenblatt G.I., Bertsch M., Chertock A.E., Prostokishin V.M., Self-similar intermediate asymptotics for a degenerate parabolic filtration absorption equation, Proc. Natl. Acad. Sci. USA97 (2000) 9844-9848. Zbl0966.35069MR1773834
  11. [11] Bernis F., Friedman A., Higher order nonlinear degenerate parabolic equations, J. Differential Equations83 (1990) 179-206. Zbl0702.35143MR1031383
  12. [12] Bernoff A.J., Witelski T.P., Linear stability of source-type similarity solutions of the thin film equation, Appl. Math. Lett.15 (2002) 599-606. Zbl1016.76031MR1889510
  13. [13] Bertozzi A.L., Pugh M.C., Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J.49 (2000) 1323-1366. Zbl0978.35007MR1836532
  14. [14] Bertsch M., Dal Passo R., Garcke H., Grün G., The thin viscous flow equation in higher space dimensions, Adv. Differential Equations3 (1998) 417-440. Zbl0954.35035MR1751951
  15. [15] Bertsch M., Dal Passo R., Ughi M., Discontinuous ‘viscosity’ solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc.320 (1990) 779-798. Zbl0714.35039MR965742
  16. [16] Bertsch M., Dal Passo R., Ughi M., Nonuniqueness of solutions of a degenerate parabolic equation, Ann. Mat. Pura Appl.161 (4) (1992) 57-81. Zbl0796.35083MR1174811
  17. [17] Bertsch M., Ughi M., Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal.14 (1990) 571-592. Zbl0702.35044MR1044287
  18. [18] Betelú S., King J.R., Explicit solutions of a two-dimensional fourth order nonlinear diffusion equation, Math. Comput. Modelling37 (2003) 395-403. Zbl1028.35037MR1961181
  19. [19] Cáceres M.J., Toscani G., Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys.128 (2007) 883-925. Zbl1131.82030MR2344717
  20. [20] Cáceres M.J., Carrillo J.A., Toscani G., Long-time behavior for a nonlinear fourth-order parabolic equation, Trans. Amer. Math. Soc.357 (2005) 1161-1175. Zbl1077.35028MR2110436
  21. [21] Carrillo J.A., Toscani G., Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys.225 (2002) 551-571. Zbl0990.35054MR1888873
  22. [22] Carrillo J.A., Jüngel A., Markowich P.A., Toscani G., Unterreiter A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math.133 (2001) 1-82. Zbl0984.35027MR1853037
  23. [23] Carrillo J.A., Toscani G., Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J.49 (2000) 113-141. Zbl0963.35098MR1777035
  24. [24] Carrillo J.A., Vázquez J.L., Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations28 (2003) 1023-1056. Zbl1036.35100MR1986060
  25. [25] Carrillo J.A., Di Francesco M., Toscani G., Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc.135 (2007) 353-363. Zbl1125.35053MR2255281
  26. [26] Carrillo J.A., McCann R.J., Villani C., Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rational Mech. Anal.179 (2006) 217-263. Zbl1082.76105MR2209130
  27. [27] Chasseigne E., Vázquez J.L., Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Rational Mech. Anal.164 (2002) 133-187. Zbl1018.35048MR1929929
  28. [28] Chertock A., On the stability of a class of self-similar solutions to the filtration-absorption equation, Eur. J. Appl. Math.13 (2002) 179-194. Zbl1056.35018MR1896227
  29. [29] Chow B., Knopf D., The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004. Zbl1086.53085MR2061425
  30. [30] Dal Passo R., Luckhaus S., A degenerate diffusion problem not in divergence form, J. Differential Equations69 (1987) 1-14. Zbl0688.35045MR897437
  31. [31] Del Pino M., Dolbeault J., Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl.81 (2002) 847-875. Zbl1112.35310MR1940370
  32. [32] Denzler J., McCann R.J., Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA100 (2003) 6922-6925. Zbl1076.35055MR1982656
  33. [33] Denzler J., McCann R.J., Fast diffusion to self-similarity: complete spectrum, long time asymptotics, and numerology, Arch. Rational Mech. Anal.175 (2005) 301-342. Zbl1083.35074MR2126633
  34. [34] Derrida B., Lebowitz J.L., Speer E., Spohn H., Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett.67 (1991) 165-168. Zbl0990.82520MR1113639
  35. [35] Diez J.A., Thomas L.P., Betelú S., Gratton R., Marino B., Gratton J., Aronson D.G., Angenent S.B., Noncircular converging flows in viscous gravity currents, Phys. Rev. E58 (1998) 6182-6187. 
  36. [36] Friedman A., Kamin S., The asymptotic behaviour of a gas in an n-dimensional porous medium, Trans. Amer. Math. Soc.262 (1980) 551-563. Zbl0447.76076MR586735
  37. [37] Galaktionov V.A., Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A125 (1993) 225-246. Zbl0824.35128MR1331559
  38. [38] L. Giacomelli, H. Knüpfer, Flat data solutions to the thin film equation do not rupture, Preprint SFB 611, n. 283, 2006. 
  39. [39] Giacomelli L., Otto F., Variational formulation for the lubrication approximation of the Hele–Shaw flow, Calc. Var. Partial Differential Equations13 (2001) 377-404. Zbl1086.35004MR1865003
  40. [40] Giacomelli L., Otto F., Rigorous lubrication approximation, Interfaces Free Bound5 (2003) 483-529. Zbl1039.76012MR2031467
  41. [41] U. Gianazza, G. Savaré, G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Preprint at http://www.imati.cnr.it/~savare/pubblicazioni/preprints.html. Zbl1223.35264MR2533926
  42. [42] J. Graveleau, Quelques solutions auto-semblables pour l'équation dela chaleur non-linéaire, Rapport Interne C.E.A., 1972. 
  43. [43] A. Jüngel, D. Matthes, The Derrida–Lebowitz–Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions, SIAM J. Math. Anal. (2007), in press. Zbl1160.35428
  44. [44] Jüngel A., Pinnau R., Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal.32 (2000) 760-777. Zbl0979.35061MR1814737
  45. [45] Kim Y.J., McCann R.J., Sharp decay rates for the fastest conservative diffusions, C. R. Acad. Sci. Paris, Ser. I341 (2005) 157-162. Zbl1073.35132MR2158837
  46. [46] Kim Y.J., McCann R.J., Potential theory and optimal convergence rates in fast nonlinear diffusion, J. Math Pures Appl.86 (2006) 42-67. Zbl1112.35025MR2246356
  47. [47] King J.R., Exact multidimensional solutions to some nonlinear diffusion equations, Quart. J. Mech. Appl. Math.46 (1993) 419-436. Zbl0818.35015MR1233988
  48. [48] Laugesen R.S., Pugh M.C., Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differential Equations95 (2002) 1-29. Zbl1029.35121MR1938391
  49. [49] Lieb E.H., Loss M., Analysis, American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
  50. [50] McCann R.J., Slepčev D., Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not.24947 (2006) 1-22. Zbl1130.35080MR2211152
  51. [51] Myers T.G., Thin films with high surface tension, SIAM Rev.40 (1998) 441-462. Zbl0908.35057MR1642807
  52. [52] Oron A., Davis S.H., Bankoff S.G., Long-scale evolution of thin liquid films, Rev. Modern Phys.69 (1997) 931-980. 
  53. [53] Otto F., Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations23 (1998) 2077-2164. Zbl0923.35211MR1662172
  54. [54] Otto F., The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations26 (2001) 101-174. Zbl0984.35089MR1842429
  55. [55] Pattle R.E., Diffusion from an instantaneous point source with concentration dependent coefficient, Quart. J. Mech. Appl. Math.12 (1959) 407-409. Zbl0119.30505MR114505
  56. [56] Pukhnachev V.V., Exact multidimensional solutions of the nonlinear diffusion equation, J. Appl. Mech. Tech. Phys.36 (1995) 169-176. Zbl0933.35113MR1349298
  57. [57] Rudykh G.A., Semenov E.I., The construction of exact solutions of the multi-dimensional quasilinear heat-conduction equation, Comp. Math. Math. Phys.33 (1993) 1087-1097. Zbl0799.35113MR1234033
  58. [58] Slepčev D., Pugh M.C., Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J.54 (2005) 1697-1738. Zbl1091.35071MR2189683
  59. [59] L. Tartar, Solutions particulières de U t = Δ U m et comportement asymptotique, Unpublished, 1986. 
  60. [60] Toscani G., A central limit theorem for solutions of the porous medium equation, J. Evol. Equ.5 (2005) 185-203. Zbl1082.35091MR2133441
  61. [61] Ughi M., A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl.143 (4) (1986) 385-400. Zbl0617.35066MR859613
  62. [62] Vazquez J.L., Asymptotic behaviour and propagation of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc.277 (1983) 507-527. Zbl0528.76096MR694373
  63. [63] Vázquez J.L., An introduction to the mathematical theory of the porous medium equation, in: Shape Optimization and Free Boundaries, Montreal, PQ, 1990, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 380, Kluwer Acad. Publ., 1992, pp. 347-389. Zbl0765.76086MR1260981
  64. [64] Vázquez J.L., Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ.3 (2003) 67-118. Zbl1036.35108MR1977429
  65. [65] Vázquez J.L., The Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. Zbl1107.35003MR2286292
  66. [66] Walter W., Ordinary Differential Equations, Translated from the Sixth German (1996) Edition by Russell Thompson, Springer-Verlag, New York, 1998. Zbl0991.34001MR1629775
  67. [67] Zel'dovich Ya.B., Barenblatt G.I., The asymptotic properties of self-modelling solutions of the nonstationary gas filtration equations, Sov. Phys. Doklady3 (1989) 44-47. 
  68. [68] Zel'dovich Ya.B., Kompaneets A.S., Theory of heat transfer with temperature dependent thermal conductivity, in: Collection in Honour of the 70th Birthday of Academician A.F. Ioffe, Izdat. Akad. Nauk. SSSR, Moscow, 1950, pp. 61-71. 
  69. [69] Titov S.S., Ustinov V.A., Investigation of polynomial solutions of the two-dimensional Leibenzon filtration equation with an integer adiabatic exponent, in: Sidorov A.F., Vershinin S.V. (Eds.), Approximate Methods for Solving Boundary Value Problems of Continuum Mechanics, vol. 91, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1985, pp. 64-70, (in Russian). MR857985

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.