On questions of decay and existence for the viscous Camassa–Holm equations
Clayton Bjorland; Maria E. Schonbek
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 5, page 907-936
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Ben-Artzi M., Global solutions of two-dimensional Navier–Stokes and Euler equations, Arch. Rational Mech. Anal.128 (4) (1994) 329-358. Zbl0837.35110MR1308857
- [2] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (6) (1982) 771-831. Zbl0509.35067MR673830
- [3] Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (11) (1993) 1661-1664. Zbl0972.35521MR1234453
- [4] Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S., Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett.81 (24) (1998) 5338-5341. Zbl1042.76525MR1745983
- [5] Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S., The Camassa–Holm equations and turbulence, Phys. D133 (1–4) (1999) 49-65. Zbl1194.76069MR1721139
- [6] Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S., A connection between the Camassa–Holm equations and turbulent flows in channels and pipes, Phys. Fluids11 (8) (1999) 2343-2353. Zbl1147.76357MR1719962
- [7] Constantin P., Foias C., Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071MR972259
- [8] J.A. Domaradzki, D.D. Holm, Navier–Stokes-alpha model: Les equations with nonlinear dispersion, 2001.
- [9] Foias C., Holm D.D., Titi E.S., The Navier–Stokes-alpha model of fluid turbulence, Phys. D152/153 (2001) 505-519. Zbl1037.76022MR1837927
- [10] Foias C., Holm D.D., Titi E.S., The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations14 (1) (2002) 1-35. Zbl0995.35051MR1878243
- [11] Holm D.D., Marsden J.E., Ratiu T.S., The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math.137 (1) (1998) 1-81. Zbl0951.37020MR1627802
- [12] Holm D.D., Titi E.S., Computational models of turbulence: The lans-α model and the role of global analysis, SIAM News38 (2005).
- [13] Hopf E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr.4 (1951) 213-231. Zbl0042.10604MR50423
- [14] Ilyin A.A., Titi E.S., Attractors for the two-dimensional Navier–Stokes-α model: an α-dependence study, J. Dynam. Differential Equations15 (4) (2003) 751-778. Zbl1039.35078MR2031580
- [15] Leray J., Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
- [16] Marsden J.E., Shkoller S., Global well-posedness for the Lagrangian averaged Navier–Stokes (LANS-α) equations on bounded domains, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.359 (1784) (2001) 1449-1468. Zbl1006.35074MR1853633
- [17] Masuda K., Weak solutions of Navier–Stokes equations, Tohoku Math. J. (2)36 (4) (1984) 623-646. Zbl0568.35077MR767409
- [18] Ogawa T., Rajopadhye S.V., Schonbek M.E., Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces, J. Funct. Anal.144 (2) (1997) 325-358. Zbl0873.35064MR1432588
- [19] Prodi G., Teoremi di tipo locale per il sistema di Navier–Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova32 (1962) 374-397. Zbl0108.28602MR189354
- [20] Schonbek M., The Fourier splitting method, in: Advances in Geometric Analysis and Continuum Mechanics, Stanford, CA, 1993, Internat. Press, Cambridge, MA, 1995, pp. 269-274. Zbl0842.35142MR1356749
- [21] Schonbek M.E., Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations5 (5) (1980) 449-473. Zbl0476.35012MR571048
- [22] Schonbek M.E., Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations, Comm. Partial Differential Equations7 (1) (1980) 449-473. Zbl0476.35012
- [23] Schonbek M.E., decay for weak solutions of the Navier–Stokes equations, Arch. Rational Mech. Anal.88 (3) (1985) 209-222. Zbl0602.76031MR775190
- [24] Schonbek M.E., Large time behaviour of solutions to the Navier–Stokes equations, Comm. Partial Differential Equations11 (7) (1986) 733-763. Zbl0607.35071MR837929
- [25] Schonbek M.E., Large time behaviour of solutions to the Navier–Stokes equations in spaces, Comm. Partial Differential Equations20 (1–2) (1995) 103-117. Zbl0831.35132
- [26] Schonbek M.E., Schonbek T.P., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst.13 (5) (2005) 1277-1304. Zbl1091.35070
- [27] Schonbek M.E., Wiegner M., On the decay of higher-order norms of the solutions of Navier–Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A126 (3) (1996) 677-685. Zbl0862.35086
- [28] Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition. Zbl0981.35001
- [29] Wiegner M., Decay results for weak solutions of the Navier–Stokes equations on , J. London Math. Soc. (2)35 (2) (1987) 303-313. Zbl0652.35095
- [30] Wiegner M., Higher order estimates in further dimensions for the solutions of Navier–Stokes equations, in: Evolution Equations, Warsaw, 2001, Banach Center Publ., vol. 60, Polish Acad. Sci., Warsaw, 2003, pp. 81-84. Zbl1029.35198MR1993060
- [31] Zhang L.H., Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations, Comm. Partial Differential Equations20 (1–2) (1995) 119-127. Zbl0823.35145MR1312702