On questions of decay and existence for the viscous Camassa–Holm equations

Clayton Bjorland; Maria E. Schonbek

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 907-936
  • ISSN: 0294-1449

How to cite

top

Bjorland, Clayton, and Schonbek, Maria E.. "On questions of decay and existence for the viscous Camassa–Holm equations." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 907-936. <http://eudml.org/doc/78819>.

@article{Bjorland2008,
author = {Bjorland, Clayton, Schonbek, Maria E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity; decay without a rate; algebraic rate},
language = {eng},
number = {5},
pages = {907-936},
publisher = {Elsevier},
title = {On questions of decay and existence for the viscous Camassa–Holm equations},
url = {http://eudml.org/doc/78819},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Bjorland, Clayton
AU - Schonbek, Maria E.
TI - On questions of decay and existence for the viscous Camassa–Holm equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 907
EP - 936
LA - eng
KW - regularity; decay without a rate; algebraic rate
UR - http://eudml.org/doc/78819
ER -

References

top
  1. [1] Ben-Artzi M., Global solutions of two-dimensional Navier–Stokes and Euler equations, Arch. Rational Mech. Anal.128 (4) (1994) 329-358. Zbl0837.35110MR1308857
  2. [2] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (6) (1982) 771-831. Zbl0509.35067MR673830
  3. [3] Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (11) (1993) 1661-1664. Zbl0972.35521MR1234453
  4. [4] Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S., Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett.81 (24) (1998) 5338-5341. Zbl1042.76525MR1745983
  5. [5] Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S., The Camassa–Holm equations and turbulence, Phys. D133 (1–4) (1999) 49-65. Zbl1194.76069MR1721139
  6. [6] Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S., A connection between the Camassa–Holm equations and turbulent flows in channels and pipes, Phys. Fluids11 (8) (1999) 2343-2353. Zbl1147.76357MR1719962
  7. [7] Constantin P., Foias C., Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071MR972259
  8. [8] J.A. Domaradzki, D.D. Holm, Navier–Stokes-alpha model: Les equations with nonlinear dispersion, 2001. 
  9. [9] Foias C., Holm D.D., Titi E.S., The Navier–Stokes-alpha model of fluid turbulence, Phys. D152/153 (2001) 505-519. Zbl1037.76022MR1837927
  10. [10] Foias C., Holm D.D., Titi E.S., The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations14 (1) (2002) 1-35. Zbl0995.35051MR1878243
  11. [11] Holm D.D., Marsden J.E., Ratiu T.S., The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math.137 (1) (1998) 1-81. Zbl0951.37020MR1627802
  12. [12] Holm D.D., Titi E.S., Computational models of turbulence: The lans-α model and the role of global analysis, SIAM News38 (2005). 
  13. [13] Hopf E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr.4 (1951) 213-231. Zbl0042.10604MR50423
  14. [14] Ilyin A.A., Titi E.S., Attractors for the two-dimensional Navier–Stokes-α model: an α-dependence study, J. Dynam. Differential Equations15 (4) (2003) 751-778. Zbl1039.35078MR2031580
  15. [15] Leray J., Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
  16. [16] Marsden J.E., Shkoller S., Global well-posedness for the Lagrangian averaged Navier–Stokes (LANS-α) equations on bounded domains, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.359 (1784) (2001) 1449-1468. Zbl1006.35074MR1853633
  17. [17] Masuda K., Weak solutions of Navier–Stokes equations, Tohoku Math. J. (2)36 (4) (1984) 623-646. Zbl0568.35077MR767409
  18. [18] Ogawa T., Rajopadhye S.V., Schonbek M.E., Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces, J. Funct. Anal.144 (2) (1997) 325-358. Zbl0873.35064MR1432588
  19. [19] Prodi G., Teoremi di tipo locale per il sistema di Navier–Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova32 (1962) 374-397. Zbl0108.28602MR189354
  20. [20] Schonbek M., The Fourier splitting method, in: Advances in Geometric Analysis and Continuum Mechanics, Stanford, CA, 1993, Internat. Press, Cambridge, MA, 1995, pp. 269-274. Zbl0842.35142MR1356749
  21. [21] Schonbek M.E., Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations5 (5) (1980) 449-473. Zbl0476.35012MR571048
  22. [22] Schonbek M.E., Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations, Comm. Partial Differential Equations7 (1) (1980) 449-473. Zbl0476.35012
  23. [23] Schonbek M.E., L 2 decay for weak solutions of the Navier–Stokes equations, Arch. Rational Mech. Anal.88 (3) (1985) 209-222. Zbl0602.76031MR775190
  24. [24] Schonbek M.E., Large time behaviour of solutions to the Navier–Stokes equations, Comm. Partial Differential Equations11 (7) (1986) 733-763. Zbl0607.35071MR837929
  25. [25] Schonbek M.E., Large time behaviour of solutions to the Navier–Stokes equations in H m spaces, Comm. Partial Differential Equations20 (1–2) (1995) 103-117. Zbl0831.35132
  26. [26] Schonbek M.E., Schonbek T.P., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst.13 (5) (2005) 1277-1304. Zbl1091.35070
  27. [27] Schonbek M.E., Wiegner M., On the decay of higher-order norms of the solutions of Navier–Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A126 (3) (1996) 677-685. Zbl0862.35086
  28. [28] Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition. Zbl0981.35001
  29. [29] Wiegner M., Decay results for weak solutions of the Navier–Stokes equations on R n , J. London Math. Soc. (2)35 (2) (1987) 303-313. Zbl0652.35095
  30. [30] Wiegner M., Higher order estimates in further dimensions for the solutions of Navier–Stokes equations, in: Evolution Equations, Warsaw, 2001, Banach Center Publ., vol. 60, Polish Acad. Sci., Warsaw, 2003, pp. 81-84. Zbl1029.35198MR1993060
  31. [31] Zhang L.H., Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations, Comm. Partial Differential Equations20 (1–2) (1995) 119-127. Zbl0823.35145MR1312702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.