A general class of phase transition models with weighted interface energy

E. Acerbi; G. Bouchitté

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1111-1143
  • ISSN: 0294-1449

How to cite

top

Acerbi, E., and Bouchitté, G.. "A general class of phase transition models with weighted interface energy." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1111-1143. <http://eudml.org/doc/78826>.

@article{Acerbi2008,
author = {Acerbi, E., Bouchitté, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {surfactant; singular perturbation; Ginzburg-Landau equation; -convergence},
language = {eng},
number = {6},
pages = {1111-1143},
publisher = {Elsevier},
title = {A general class of phase transition models with weighted interface energy},
url = {http://eudml.org/doc/78826},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Acerbi, E.
AU - Bouchitté, G.
TI - A general class of phase transition models with weighted interface energy
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1111
EP - 1143
LA - eng
KW - surfactant; singular perturbation; Ginzburg-Landau equation; -convergence
UR - http://eudml.org/doc/78826
ER -

References

top
  1. [1] Bouchitté G., Singular perturbation of variational problems arising from a two-phase transition model, Appl. Math. Optim.21 (1990) 289-314. Zbl0695.49003MR1036589
  2. [2] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., vol. 580, Springer, Berlin, Heidelberg, 1977. Zbl0346.46038MR467310
  3. [3] Chen K., Jayaprakash C., Pandit R., Wenzel W., Microemulsions: a Landau–Ginzburg theory, Phys. Rev. Lett.65 (1990) 2736-2739. 
  4. [4] Ciach A., Hołyst R., Periodic surfaces and cubic phases in mixtures of oil, water and surfactant, J. Chem. Phys.110 (1999) 3207-3214. 
  5. [5] Fonseca I., Morini M., Slastikov V., Surfactant in foam stability: a phase field model, Arch. Ration. Mech. Anal.183 (3) (2007) 411-456. Zbl1107.76076MR2278411
  6. [6] Gompper G., Klein S., Ginzburg–Landau theory of aqueous surfactant solutions, J. Phys. II (France)2 (1992) 1725-1744. 
  7. [7] Hiai F., Umegaki H., Integrals, conditional expectations and martingales functions, J. Multivariate Anal.7 (1977) 149-182. Zbl0368.60006MR507504
  8. [8] Komura S., Kodama H., Two-order-parameter model for an oil-water-surfactant system, Phys. Rev. E55 (1997) 1722-1727. 
  9. [9] Laradji M., Guo H., Grant M., Zuckermann M.J., Dynamics of phase separation in the presence of surfactants, J. Phys. A: Math. Gen.24 (1991) L629-L635. 
  10. [10] Laradji M., Guo H., Grant M., Zuckermann M.J., Effect of surfactants on the dynamics of phase separation, J. Phys. Condens. Matter4 (1992) 6715-6728. 
  11. [11] Modica L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal.98 (2) (1987) 123-142. Zbl0616.76004MR866718
  12. [12] Teramoto T., Yonezawa F., Droplet growth dynamics in a water/oil/surfactant system, J. Colloid Interface Sci.235 (2001) 329-333. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.