Structurally stable perturbations of polynomials in the Riemann sphere

J. Iglesias; A. Portela; A. Rovella

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1209-1220
  • ISSN: 0294-1449

How to cite

top

Iglesias, J., Portela, A., and Rovella, A.. "Structurally stable perturbations of polynomials in the Riemann sphere." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1209-1220. <http://eudml.org/doc/78829>.

@article{Iglesias2008,
author = {Iglesias, J., Portela, A., Rovella, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {structural stability; criticat set; complex polynomials},
language = {eng},
number = {6},
pages = {1209-1220},
publisher = {Elsevier},
title = {Structurally stable perturbations of polynomials in the Riemann sphere},
url = {http://eudml.org/doc/78829},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Iglesias, J.
AU - Portela, A.
AU - Rovella, A.
TI - Structurally stable perturbations of polynomials in the Riemann sphere
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1209
EP - 1220
LA - eng
KW - structural stability; criticat set; complex polynomials
UR - http://eudml.org/doc/78829
ER -

References

top
  1. [1] Aoki N., Moriyasu K., Sumi N., C 1 maps having hyperbolic periodic points, Fund. Math.169 (2001) 1-49. Zbl1031.37021MR1852352
  2. [2] Franks J., Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc.158 (1971) 301-308. Zbl0219.58005MR283812
  3. [3] Golubitsky M., Guillemin V., Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14, Springer, New York, 1973. Zbl0294.58004MR341518
  4. [4] Hirsch M., Differential Topology, Springer-Verlag, New York, 1976. Zbl0356.57001MR448362
  5. [5] Iglesias J., Portela A., Real Perturbations of complex polynomials, Bull. Braz. Math. Soc. (N.S.)38 (1) (2007) 129-155. Zbl1138.37024MR2305054
  6. [6] Mañé R., A proof of the C 1 stability conjecture, Publ. Math. Inst. Hautes Études Sci.66 (1987) 161-210, (in English). Zbl0678.58022MR932138
  7. [7] Mañé R., Sad P., Sullivan D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4)16 (2) (1983) 193-217. Zbl0524.58025MR732343
  8. [8] Milnor J., Dynamics in One Complex Variable, Annals of Mathematics Studies, vol. 160, Princeton Univ. Press, 2006. Zbl1085.30002MR2193309
  9. [9] Przytycki F., On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math.60 (1976) 61-77. Zbl0343.58008MR445553
  10. [10] Robinson C., Structural stability of C 1 diffeomorphisms, J. Differential Equations22 (1976) 28-73. Zbl0343.58009MR474411
  11. [11] Shub M., Endomorphisms of compact differentiable manifolds, Amer. J. Math.91 (1969) 175-199. Zbl0201.56305MR240824
  12. [12] Steinmetz N., Rational Iteration, de Gruyter Studies in Mathematics, vol. 16, 1993. Zbl0773.58010MR1224235

NotesEmbed ?

top

You must be logged in to post comments.