Structurally stable perturbations of polynomials in the Riemann sphere
J. Iglesias; A. Portela; A. Rovella
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 6, page 1209-1220
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Aoki N., Moriyasu K., Sumi N., maps having hyperbolic periodic points, Fund. Math.169 (2001) 1-49. Zbl1031.37021MR1852352
- [2] Franks J., Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc.158 (1971) 301-308. Zbl0219.58005MR283812
- [3] Golubitsky M., Guillemin V., Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14, Springer, New York, 1973. Zbl0294.58004MR341518
- [4] Hirsch M., Differential Topology, Springer-Verlag, New York, 1976. Zbl0356.57001MR448362
- [5] Iglesias J., Portela A., Real Perturbations of complex polynomials, Bull. Braz. Math. Soc. (N.S.)38 (1) (2007) 129-155. Zbl1138.37024MR2305054
- [6] Mañé R., A proof of the stability conjecture, Publ. Math. Inst. Hautes Études Sci.66 (1987) 161-210, (in English). Zbl0678.58022MR932138
- [7] Mañé R., Sad P., Sullivan D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4)16 (2) (1983) 193-217. Zbl0524.58025MR732343
- [8] Milnor J., Dynamics in One Complex Variable, Annals of Mathematics Studies, vol. 160, Princeton Univ. Press, 2006. Zbl1085.30002MR2193309
- [9] Przytycki F., On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math.60 (1976) 61-77. Zbl0343.58008MR445553
- [10] Robinson C., Structural stability of diffeomorphisms, J. Differential Equations22 (1976) 28-73. Zbl0343.58009MR474411
- [11] Shub M., Endomorphisms of compact differentiable manifolds, Amer. J. Math.91 (1969) 175-199. Zbl0201.56305MR240824
- [12] Steinmetz N., Rational Iteration, de Gruyter Studies in Mathematics, vol. 16, 1993. Zbl0773.58010MR1224235