Structurally stable perturbations of polynomials in the Riemann sphere
J. Iglesias; A. Portela; A. Rovella
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 6, page 1209-1220
- ISSN: 0294-1449
Access Full Article
topHow to cite
topIglesias, J., Portela, A., and Rovella, A.. "Structurally stable perturbations of polynomials in the Riemann sphere." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1209-1220. <http://eudml.org/doc/78829>.
@article{Iglesias2008,
author = {Iglesias, J., Portela, A., Rovella, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {structural stability; criticat set; complex polynomials},
language = {eng},
number = {6},
pages = {1209-1220},
publisher = {Elsevier},
title = {Structurally stable perturbations of polynomials in the Riemann sphere},
url = {http://eudml.org/doc/78829},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Iglesias, J.
AU - Portela, A.
AU - Rovella, A.
TI - Structurally stable perturbations of polynomials in the Riemann sphere
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1209
EP - 1220
LA - eng
KW - structural stability; criticat set; complex polynomials
UR - http://eudml.org/doc/78829
ER -
References
top- [1] Aoki N., Moriyasu K., Sumi N., maps having hyperbolic periodic points, Fund. Math.169 (2001) 1-49. Zbl1031.37021MR1852352
- [2] Franks J., Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc.158 (1971) 301-308. Zbl0219.58005MR283812
- [3] Golubitsky M., Guillemin V., Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14, Springer, New York, 1973. Zbl0294.58004MR341518
- [4] Hirsch M., Differential Topology, Springer-Verlag, New York, 1976. Zbl0356.57001MR448362
- [5] Iglesias J., Portela A., Real Perturbations of complex polynomials, Bull. Braz. Math. Soc. (N.S.)38 (1) (2007) 129-155. Zbl1138.37024MR2305054
- [6] Mañé R., A proof of the stability conjecture, Publ. Math. Inst. Hautes Études Sci.66 (1987) 161-210, (in English). Zbl0678.58022MR932138
- [7] Mañé R., Sad P., Sullivan D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4)16 (2) (1983) 193-217. Zbl0524.58025MR732343
- [8] Milnor J., Dynamics in One Complex Variable, Annals of Mathematics Studies, vol. 160, Princeton Univ. Press, 2006. Zbl1085.30002MR2193309
- [9] Przytycki F., On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math.60 (1976) 61-77. Zbl0343.58008MR445553
- [10] Robinson C., Structural stability of diffeomorphisms, J. Differential Equations22 (1976) 28-73. Zbl0343.58009MR474411
- [11] Shub M., Endomorphisms of compact differentiable manifolds, Amer. J. Math.91 (1969) 175-199. Zbl0201.56305MR240824
- [12] Steinmetz N., Rational Iteration, de Gruyter Studies in Mathematics, vol. 16, 1993. Zbl0773.58010MR1224235
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.