Structurally stable perturbations of polynomials in the Riemann sphere

J. Iglesias; A. Portela; A. Rovella

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1209-1220
  • ISSN: 0294-1449

How to cite

top

Iglesias, J., Portela, A., and Rovella, A.. "Structurally stable perturbations of polynomials in the Riemann sphere." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1209-1220. <http://eudml.org/doc/78829>.

@article{Iglesias2008,
author = {Iglesias, J., Portela, A., Rovella, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {structural stability; criticat set; complex polynomials},
language = {eng},
number = {6},
pages = {1209-1220},
publisher = {Elsevier},
title = {Structurally stable perturbations of polynomials in the Riemann sphere},
url = {http://eudml.org/doc/78829},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Iglesias, J.
AU - Portela, A.
AU - Rovella, A.
TI - Structurally stable perturbations of polynomials in the Riemann sphere
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1209
EP - 1220
LA - eng
KW - structural stability; criticat set; complex polynomials
UR - http://eudml.org/doc/78829
ER -

References

top
  1. [1] Aoki N., Moriyasu K., Sumi N., C 1 maps having hyperbolic periodic points, Fund. Math.169 (2001) 1-49. Zbl1031.37021MR1852352
  2. [2] Franks J., Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc.158 (1971) 301-308. Zbl0219.58005MR283812
  3. [3] Golubitsky M., Guillemin V., Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14, Springer, New York, 1973. Zbl0294.58004MR341518
  4. [4] Hirsch M., Differential Topology, Springer-Verlag, New York, 1976. Zbl0356.57001MR448362
  5. [5] Iglesias J., Portela A., Real Perturbations of complex polynomials, Bull. Braz. Math. Soc. (N.S.)38 (1) (2007) 129-155. Zbl1138.37024MR2305054
  6. [6] Mañé R., A proof of the C 1 stability conjecture, Publ. Math. Inst. Hautes Études Sci.66 (1987) 161-210, (in English). Zbl0678.58022MR932138
  7. [7] Mañé R., Sad P., Sullivan D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4)16 (2) (1983) 193-217. Zbl0524.58025MR732343
  8. [8] Milnor J., Dynamics in One Complex Variable, Annals of Mathematics Studies, vol. 160, Princeton Univ. Press, 2006. Zbl1085.30002MR2193309
  9. [9] Przytycki F., On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math.60 (1976) 61-77. Zbl0343.58008MR445553
  10. [10] Robinson C., Structural stability of C 1 diffeomorphisms, J. Differential Equations22 (1976) 28-73. Zbl0343.58009MR474411
  11. [11] Shub M., Endomorphisms of compact differentiable manifolds, Amer. J. Math.91 (1969) 175-199. Zbl0201.56305MR240824
  12. [12] Steinmetz N., Rational Iteration, de Gruyter Studies in Mathematics, vol. 16, 1993. Zbl0773.58010MR1224235

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.