A proof of the C 1 stability conjecture

Ricardo Mañé

Publications Mathématiques de l'IHÉS (1987)

  • Volume: 66, page 161-210
  • ISSN: 0073-8301

How to cite

top

Mañé, Ricardo. "A proof of the $C^1$ stability conjecture." Publications Mathématiques de l'IHÉS 66 (1987): 161-210. <http://eudml.org/doc/104026>.

@article{Mañé1987,
author = {Mañé, Ricardo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {diffeomorphism; structural stability},
language = {eng},
pages = {161-210},
publisher = {Institut des Hautes Études Scientifiques},
title = {A proof of the $C^1$ stability conjecture},
url = {http://eudml.org/doc/104026},
volume = {66},
year = {1987},
}

TY - JOUR
AU - Mañé, Ricardo
TI - A proof of the $C^1$ stability conjecture
JO - Publications Mathématiques de l'IHÉS
PY - 1987
PB - Institut des Hautes Études Scientifiques
VL - 66
SP - 161
EP - 210
LA - eng
KW - diffeomorphism; structural stability
UR - http://eudml.org/doc/104026
ER -

References

top
  1. [1] A. ANDRONOV, L. PONTRJAGIN, Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251. Zbl0016.11301JFM63.0728.01
  2. [2] D. V. ANOSOV, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math., 90 (1967), 1-235. Zbl0176.19101MR36 #7157
  3. [3] R. BOWEN, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lecture Notes in Math., 470 (1975). Zbl0308.28010MR56 #1364
  4. [4] J. FRANKS, Necessary conditions for stability of diffeomorphisms, Trans. A.M.S., 158 (1971), 301-308. Zbl0219.58005MR44 #1042
  5. [5] J. GUCKENHEIMER, A strange, strange attractor, in The Hopf bifurcation and its applications, Applied Mathematics Series, 19 (1976), 165-178, Springer Verlag. MR58 #13209
  6. [6] M. HIRSCH, C. PUGH, M. SHUB, Invariant manifolds, Springer Lecture Notes in Math., 583 (1977). Zbl0355.58009MR58 #18595
  7. [7] R. LABARCA, M. J. PACIFICO, Stability of singular horseshoes, Topology, 25 (1986), 337-352. Zbl0611.58033MR87h:58106
  8. [8] S. T. LIAO, On the stability conjecture, Chinese Ann. Math., 1 (1980), 9-30. Zbl0449.58013MR82c:58031
  9. [9] R. MAÑÉ, Persistent manifolds are normally hyperbolic, Trans. A.M.S., 246 (1978), 261-283. Zbl0362.58014MR80c:58019
  10. [10] R. MAÑÉ, Expansive diffeomorphisms, in Dynamical Systems-Warwick 1974, Springer Lecture Notes in Math., 468 (1975), 162-174. Zbl0309.58016MR58 #31263
  11. [11] R. MAÑÉ, Characterization of AS diffeomorphisms, Proc. ELAM III, Springer Lecture Notes in Math., 597 (1977), 389-394. Zbl0359.58011MR56 #16695
  12. [12] R. MAÑÉ, An ergodic closing lemma, Ann. of Math., 116 (1982), 503-540. Zbl0511.58029MR84f:58070
  13. [13] R. MAÑÉ, On the creation of homoclinic points, Publ. Math. I.H.E.S., 66 (1987), 139-159. Zbl0669.58024MR89e:58089
  14. [14] S. NEWHOUSE, Lectures on dynamical systems, Progr. in Math., 8 (1980), 1-114. Zbl0444.58001MR81m:58028
  15. [15] J. PALIS, A note on Ω-stability, in Global Analysis, Proc. Sympos. Pure Math., A.M.S., 14 (1970), 221-222. Zbl0214.50801MR42 #5276
  16. [16] J. PALIS, S. SMALE, Structural stability theorems, in Global Analysis, Proc. Sympos. Pure Math., A.M.S., 14 (1970), 223-231. Zbl0214.50702MR42 #2505
  17. [17] V. A. PLISS, Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations, Diff. Uravnenija, 8 (1972), 972-983. Zbl0286.34088MR46 #921
  18. [18] V. A. PLISS, On a conjecture due to Smale, Diff. Uravnenija, 8 (1972), 268-282. Zbl0243.34077MR45 #8957
  19. [19] C. PUGH, The closing lemma, Amer. J. Math., 89 (1967), 956-1009. Zbl0167.21803MR37 #2256
  20. [20] J. ROBBIN, A structural stability theorem, Ann. of Math., 94 (1971), 447-493. Zbl0224.58005MR44 #4783
  21. [21] C. ROBINSON, Cr structural stability implies Kupka-Smale, in Dynamical Systems, Salvador, 1971, Academic Press 1973, 443-449. Zbl0275.58014MR48 #12601
  22. [22] C. ROBINSON, Structural stability of C1 diffeomorphisms, J. Diff. Eq., 22 (1976), 28-73. Zbl0343.58009MR57 #14051
  23. [23] M. SHUB, Stabilité globale des systèmes dynamiques, Astérisque, 56 (1978). Zbl0396.58014MR80c:58015
  24. [24] S. SMALE, Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, Princeton Univ. Press, 1964, 63-80. Zbl0142.41103MR31 #6244
  25. [25] S. SMALE, Differentiable dynamical systems, Bull. A.M.S., 73 (1967), 747-817. Zbl0202.55202MR37 #3598
  26. [26] S. SMALE, The Ω-stability theorem, in Global Analysis, Proc. Sympos. Pure Math., A.M.S., 14 (1970), 289-297. Zbl0205.54104MR42 #6852

Citations in EuDML Documents

top
  1. Kazuhiro Sakai, On positively expansive differentiable maps
  2. Jacob Palis, On the C 1 Ω -stability conjecture
  3. François Béguin, Classification des difféomorphismes de Smale des surfaces : types géométriques réalisables
  4. J. Palis, J.-C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori
  5. J. Iglesias, A. Portela, A. Rovella, Structurally stable perturbations of polynomials in the Riemann sphere
  6. Raúl Ures, Abundance of hyperbolicity in the C 1 topology
  7. Andrzej Bielecki, Topological conjugacy of cascades generated by gradient flows on the two-dimensional sphere
  8. Michael Benedicks, Marcelo Viana, Random perturbations and statistical properties of Hénon-like maps
  9. Jean-Christophe Yoccoz, Polynômes quadratiques et attracteur de Hénon
  10. Sylvain Crovisier, Periodic orbits and chain-transitive sets of C1-diffeomorphisms

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.