Morse theory for indefinite nonlinear elliptic problems
Kung-Ching Chang; Mei-Yue Jiang
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 139-158
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChang, Kung-Ching, and Jiang, Mei-Yue. "Morse theory for indefinite nonlinear elliptic problems." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 139-158. <http://eudml.org/doc/78832>.
@article{Chang2009,
author = {Chang, Kung-Ching, Jiang, Mei-Yue},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear elliptic problems; Dirichlet condition; Morse theory; critical points},
language = {eng},
number = {1},
pages = {139-158},
publisher = {Elsevier},
title = {Morse theory for indefinite nonlinear elliptic problems},
url = {http://eudml.org/doc/78832},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Chang, Kung-Ching
AU - Jiang, Mei-Yue
TI - Morse theory for indefinite nonlinear elliptic problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 139
EP - 158
LA - eng
KW - nonlinear elliptic problems; Dirichlet condition; Morse theory; critical points
UR - http://eudml.org/doc/78832
ER -
References
top- [1] N. Ackermann, T. Bartsch, P. Kaplicky, P. Quittner, A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems, Trans. Amer. Math. Soc., in press. Zbl1143.37049MR2386234
- [2] Amann H., Lépez-Gómez J., A priori bounds and multiple solutions for superlinear indefinite nonlinear elliptic equations, J. Differential Equations146 (1998) 336-374. Zbl0909.35044MR1631287
- [3] Alama S., Del Pino M., Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, Ann. Inst. H. Poincaré Anal. Nonlinéaire13 (1996) 95-115. Zbl0851.35037MR1373473
- [4] Alama S., Tarantello G., On semilinear elliptic equations with indefinite nonlinearities, Calc. Var.1 (1993) 439-475. Zbl0809.35022MR1383913
- [5] Alama S., Tarantello G., Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal.141 (1996) 159-215. Zbl0860.35032MR1414377
- [6] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
- [7] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problem, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
- [8] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problem and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
- [9] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA2 (1995) 533-572. Zbl0840.35035MR1356874
- [10] Cazenave T., Haraux A., An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. Zbl0926.35049MR1691574
- [11] Cazenave T., Lions P.L., Solutions globales d'équations de la chaleaur semi linéaires, Comm. Partial Differential Equations9 (1984) 955-978. Zbl0555.35067MR755928
- [12] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
- [13] Chang K.C., Morse theory in nonlinear analysis, in: Ambrosetti A., Chang K.C., Ekeland I. (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, 1998, pp. 60-101. Zbl0960.58006MR1703528
- [14] Chang K.C., Heat methods in nonlinear elliptic equations, in: Brézis H., Chang K.C., Li S.J., Rabinowitz P.H. (Eds.), Topological and Variational Methods and Their Applications, World Scientific, 2003, pp. 65-76. Zbl1058.35013MR2010642
- [15] Chang K.C., Ghoussoub N., The Conley index and the critical groups via an extension of Gromoll–Meyer theory, Topol. Methods Nonlinear Anal.7 (1996) 77-93. Zbl0898.58006MR1422006
- [16] Chang K.C., Jiang M.Y., Dirichlet problems with indefinite nonlinearities, Cacl. Var.20 (2004) 257-282. Zbl1142.35378MR2062944
- [17] Chen W., Li C., Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems3 (1997) 333-340. Zbl0948.35054MR1444198
- [18] Du Y.H., Li S.J., Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Differential Equations10 (2005) 841-860. Zbl1161.35388MR2150868
- [19] Giga Y., A bound for global solutions of semilinear heat equations, Comm. Math. Phys.103 (1986) 415-421. Zbl0595.35057MR832917
- [20] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001. Zbl1042.35002MR1814364
- [21] Grossi M., Magrone P., Matzeau M., Linking type solutions for elliptic equations with indefinite nonlinearities, Discrete and Contin. Dynam. Systems7 (2001) 703-718. Zbl1021.35030MR1849654
- [22] Li S.-J., Wang Z.-Q., Mountain pass theorem in order interval and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math.81 (2000) 373-396. Zbl0962.35065MR1785289
- [23] Lieberman G.M., Second Order Parabolic Differential Equations, World Scientific, 1998. Zbl0884.35001MR1465184
- [24] Magrone P., On a class of semilinear elliptic equations with potential changing sign, Dynam. Systems Appl.9 (2000) 459-467. Zbl1014.35033MR1843692
- [25] Palais R., Homotopy theory of infinite dimensional manifolds, Topology5 (1966) 115-132. Zbl0138.18302MR189028
- [26] Ramos M., Terracini S., Troestler C., Superlinear indefinite elliptic problems and Pohozaev type identities, J. Funct. Anal.159 (1998) 596-628. Zbl0937.35060MR1658097
- [27] Quittner P., A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenian (N.S.)68 (1999) 195-203. Zbl0940.35112MR1757788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.