Morse theory for indefinite nonlinear elliptic problems

Kung-Ching Chang; Mei-Yue Jiang

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 139-158
  • ISSN: 0294-1449

How to cite

top

Chang, Kung-Ching, and Jiang, Mei-Yue. "Morse theory for indefinite nonlinear elliptic problems." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 139-158. <http://eudml.org/doc/78832>.

@article{Chang2009,
author = {Chang, Kung-Ching, Jiang, Mei-Yue},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear elliptic problems; Dirichlet condition; Morse theory; critical points},
language = {eng},
number = {1},
pages = {139-158},
publisher = {Elsevier},
title = {Morse theory for indefinite nonlinear elliptic problems},
url = {http://eudml.org/doc/78832},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Chang, Kung-Ching
AU - Jiang, Mei-Yue
TI - Morse theory for indefinite nonlinear elliptic problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 139
EP - 158
LA - eng
KW - nonlinear elliptic problems; Dirichlet condition; Morse theory; critical points
UR - http://eudml.org/doc/78832
ER -

References

top
  1. [1] N. Ackermann, T. Bartsch, P. Kaplicky, P. Quittner, A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems, Trans. Amer. Math. Soc., in press. Zbl1143.37049MR2386234
  2. [2] Amann H., Lépez-Gómez J., A priori bounds and multiple solutions for superlinear indefinite nonlinear elliptic equations, J. Differential Equations146 (1998) 336-374. Zbl0909.35044MR1631287
  3. [3] Alama S., Del Pino M., Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, Ann. Inst. H. Poincaré Anal. Nonlinéaire13 (1996) 95-115. Zbl0851.35037MR1373473
  4. [4] Alama S., Tarantello G., On semilinear elliptic equations with indefinite nonlinearities, Calc. Var.1 (1993) 439-475. Zbl0809.35022MR1383913
  5. [5] Alama S., Tarantello G., Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal.141 (1996) 159-215. Zbl0860.35032MR1414377
  6. [6] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
  7. [7] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problem, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
  8. [8] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problem and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
  9. [9] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA2 (1995) 533-572. Zbl0840.35035MR1356874
  10. [10] Cazenave T., Haraux A., An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. Zbl0926.35049MR1691574
  11. [11] Cazenave T., Lions P.L., Solutions globales d'équations de la chaleaur semi linéaires, Comm. Partial Differential Equations9 (1984) 955-978. Zbl0555.35067MR755928
  12. [12] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
  13. [13] Chang K.C., Morse theory in nonlinear analysis, in: Ambrosetti A., Chang K.C., Ekeland I. (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, 1998, pp. 60-101. Zbl0960.58006MR1703528
  14. [14] Chang K.C., Heat methods in nonlinear elliptic equations, in: Brézis H., Chang K.C., Li S.J., Rabinowitz P.H. (Eds.), Topological and Variational Methods and Their Applications, World Scientific, 2003, pp. 65-76. Zbl1058.35013MR2010642
  15. [15] Chang K.C., Ghoussoub N., The Conley index and the critical groups via an extension of Gromoll–Meyer theory, Topol. Methods Nonlinear Anal.7 (1996) 77-93. Zbl0898.58006MR1422006
  16. [16] Chang K.C., Jiang M.Y., Dirichlet problems with indefinite nonlinearities, Cacl. Var.20 (2004) 257-282. Zbl1142.35378MR2062944
  17. [17] Chen W., Li C., Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems3 (1997) 333-340. Zbl0948.35054MR1444198
  18. [18] Du Y.H., Li S.J., Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Differential Equations10 (2005) 841-860. Zbl1161.35388MR2150868
  19. [19] Giga Y., A bound for global solutions of semilinear heat equations, Comm. Math. Phys.103 (1986) 415-421. Zbl0595.35057MR832917
  20. [20] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001. Zbl1042.35002MR1814364
  21. [21] Grossi M., Magrone P., Matzeau M., Linking type solutions for elliptic equations with indefinite nonlinearities, Discrete and Contin. Dynam. Systems7 (2001) 703-718. Zbl1021.35030MR1849654
  22. [22] Li S.-J., Wang Z.-Q., Mountain pass theorem in order interval and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math.81 (2000) 373-396. Zbl0962.35065MR1785289
  23. [23] Lieberman G.M., Second Order Parabolic Differential Equations, World Scientific, 1998. Zbl0884.35001MR1465184
  24. [24] Magrone P., On a class of semilinear elliptic equations with potential changing sign, Dynam. Systems Appl.9 (2000) 459-467. Zbl1014.35033MR1843692
  25. [25] Palais R., Homotopy theory of infinite dimensional manifolds, Topology5 (1966) 115-132. Zbl0138.18302MR189028
  26. [26] Ramos M., Terracini S., Troestler C., Superlinear indefinite elliptic problems and Pohozaev type identities, J. Funct. Anal.159 (1998) 596-628. Zbl0937.35060MR1658097
  27. [27] Quittner P., A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenian (N.S.)68 (1999) 195-203. Zbl0940.35112MR1757788

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.