Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking

Stanley Alama; Manuel Del Pino

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 1, page 95-115
  • ISSN: 0294-1449

How to cite

top

Alama, Stanley, and Del Pino, Manuel. "Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking." Annales de l'I.H.P. Analyse non linéaire 13.1 (1996): 95-115. <http://eudml.org/doc/78377>.

@article{Alama1996,
author = {Alama, Stanley, Del Pino, Manuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multiple solutions; Morse theory; linking; sub-and supersolutions},
language = {eng},
number = {1},
pages = {95-115},
publisher = {Gauthier-Villars},
title = {Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking},
url = {http://eudml.org/doc/78377},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Alama, Stanley
AU - Del Pino, Manuel
TI - Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 1
SP - 95
EP - 115
LA - eng
KW - multiple solutions; Morse theory; linking; sub-and supersolutions
UR - http://eudml.org/doc/78377
ER -

References

top
  1. [1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. of Var. and P. D. E., Vol. 1, 1993, pp. 439-475. Zbl0809.35022MR1383913
  2. [2] S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, to appear inMath. Z. Zbl0853.35039MR1381593
  3. [3] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, preprint, 1994. Zbl0860.35032MR1414377
  4. [4] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., Vol. 52, 1979, pp. 241-273. Zbl0465.49006MR537061
  5. [5] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires, C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 945-950. Zbl0820.35056MR1249366
  6. [6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, preprint, May 1994. MR1356874
  7. [7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, preprint, 1994. Zbl0816.35030MR1321809
  8. [8] H. Brezis and L. Nirenberg, "H1 versus C1 minimizers", C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 465-572. Zbl0803.35029MR1239032
  9. [9] K.C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems", Birkhäuser: Boston, 1993. Zbl0779.58005MR1196690
  10. [10] K.C. Chang, "H1 versus C1 isolated critical points", C. R. Acad. Sci. Paris, t. 319, Série I, 1994, pp. 441-446. Zbl0810.35025MR1296769
  11. [11] M. Del Pino and P. Felmer, Multiple solutions for a semilinear elliptic equation, preprint, 1992. MR1303117
  12. [12] J.F. Escobar and R.M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., Vol. 86, 1986, pp. 243-254. Zbl0628.53041MR856845
  13. [13] H. Hofer, A Note on the Topological Degree at a Critical Point of Mountainpass-type, Proc. Am. Math. Soc., Vol. 90, 1984, pp. 309-315. Zbl0545.58015MR727256
  14. [14] J. Kazdan and F. Warner, Scalar curvature and the conformal deformation of Riemannian structure, J. Diff. Geom., Vol. 10, 1975, pp. 113-134. Zbl0296.53037MR365409
  15. [15] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer: New York, 1989. Zbl0676.58017MR982267
  16. [16] T. Ouyang, On the positive solutions of semilinear elliptic equations Δu + λu + hup = 0 on compact manifolds, Part II, Indiana Univ. Math. J., Vol. 40, 1992, pp. 1083-1140. Zbl0773.35020MR1129343
  17. [17] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS-NSF, Vol. 65, American Math. Soc.: Providence, 1986. Zbl0609.58002MR845785
  18. [18] M. Struwe, "Variational Methods", Springer-Verlag: Berlin, 1990. Zbl0746.49010MR1078018
  19. [19] H. Tehrani, Ph.D. thesis, New York Univ., 1994. 
  20. [20] Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré- Analyse Non lin., Vol. 8, 1991, pp. 43-57. Zbl0733.35043MR1094651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.