Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
Stanley Alama; Manuel Del Pino
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 1, page 95-115
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAlama, Stanley, and Del Pino, Manuel. "Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking." Annales de l'I.H.P. Analyse non linéaire 13.1 (1996): 95-115. <http://eudml.org/doc/78377>.
@article{Alama1996,
author = {Alama, Stanley, Del Pino, Manuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multiple solutions; Morse theory; linking; sub-and supersolutions},
language = {eng},
number = {1},
pages = {95-115},
publisher = {Gauthier-Villars},
title = {Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking},
url = {http://eudml.org/doc/78377},
volume = {13},
year = {1996},
}
TY - JOUR
AU - Alama, Stanley
AU - Del Pino, Manuel
TI - Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 1
SP - 95
EP - 115
LA - eng
KW - multiple solutions; Morse theory; linking; sub-and supersolutions
UR - http://eudml.org/doc/78377
ER -
References
top- [1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. of Var. and P. D. E., Vol. 1, 1993, pp. 439-475. Zbl0809.35022MR1383913
- [2] S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, to appear inMath. Z. Zbl0853.35039MR1381593
- [3] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, preprint, 1994. Zbl0860.35032MR1414377
- [4] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., Vol. 52, 1979, pp. 241-273. Zbl0465.49006MR537061
- [5] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires, C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 945-950. Zbl0820.35056MR1249366
- [6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, preprint, May 1994. MR1356874
- [7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, preprint, 1994. Zbl0816.35030MR1321809
- [8] H. Brezis and L. Nirenberg, "H1 versus C1 minimizers", C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 465-572. Zbl0803.35029MR1239032
- [9] K.C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems", Birkhäuser: Boston, 1993. Zbl0779.58005MR1196690
- [10] K.C. Chang, "H1 versus C1 isolated critical points", C. R. Acad. Sci. Paris, t. 319, Série I, 1994, pp. 441-446. Zbl0810.35025MR1296769
- [11] M. Del Pino and P. Felmer, Multiple solutions for a semilinear elliptic equation, preprint, 1992. MR1303117
- [12] J.F. Escobar and R.M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., Vol. 86, 1986, pp. 243-254. Zbl0628.53041MR856845
- [13] H. Hofer, A Note on the Topological Degree at a Critical Point of Mountainpass-type, Proc. Am. Math. Soc., Vol. 90, 1984, pp. 309-315. Zbl0545.58015MR727256
- [14] J. Kazdan and F. Warner, Scalar curvature and the conformal deformation of Riemannian structure, J. Diff. Geom., Vol. 10, 1975, pp. 113-134. Zbl0296.53037MR365409
- [15] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer: New York, 1989. Zbl0676.58017MR982267
- [16] T. Ouyang, On the positive solutions of semilinear elliptic equations Δu + λu + hup = 0 on compact manifolds, Part II, Indiana Univ. Math. J., Vol. 40, 1992, pp. 1083-1140. Zbl0773.35020MR1129343
- [17] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS-NSF, Vol. 65, American Math. Soc.: Providence, 1986. Zbl0609.58002MR845785
- [18] M. Struwe, "Variational Methods", Springer-Verlag: Berlin, 1990. Zbl0746.49010MR1078018
- [19] H. Tehrani, Ph.D. thesis, New York Univ., 1994.
- [20] Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré- Analyse Non lin., Vol. 8, 1991, pp. 43-57. Zbl0733.35043MR1094651
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.