Global boundary controllability of the Saint-Venant system for sloped canals with friction
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 257-270
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGugat, M., and Leugering, G.. "Global boundary controllability of the Saint-Venant system for sloped canals with friction." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 257-270. <http://eudml.org/doc/78839>.
@article{Gugat2009,
author = {Gugat, M., Leugering, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global controllability; nonlinear hyperbolic system; Saint-Venant equation; source term; friction; slope},
language = {eng},
number = {1},
pages = {257-270},
publisher = {Elsevier},
title = {Global boundary controllability of the Saint-Venant system for sloped canals with friction},
url = {http://eudml.org/doc/78839},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Gugat, M.
AU - Leugering, G.
TI - Global boundary controllability of the Saint-Venant system for sloped canals with friction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 257
EP - 270
LA - eng
KW - global controllability; nonlinear hyperbolic system; Saint-Venant equation; source term; friction; slope
UR - http://eudml.org/doc/78839
ER -
References
top- [1] Cirina M., Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control7 (1969) 198-212. Zbl0182.20203MR254408
- [2] Cirina M., Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math. J.17 (1970) 193-209. Zbl0201.42702MR271546
- [3] de Halleux J., Prieur C., Coron J.-M., d'Andréa Novel B., Bastin G., Boundary feedback control in networks of open channels, Automatica39 (2003) 1365-1376. Zbl1175.93108MR2141681
- [4] de Saint-Venant B., Theorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l'introduction des marees dans leur lit, Comptes Rendus Academie des Sciences73 (1871) 148-154, 237–240. Zbl03.0482.04JFM03.0482.04
- [5] Graf W.H., Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998.
- [6] Gugat M., Boundary controllability between sub- and supercritical flow, SIAM J. Control Optim.42 (2003) 1056-1070. Zbl1047.35087MR2002148
- [7] Gugat M., Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Modeling Optim.7 (2005) 9-37. Zbl1165.49307MR2304344
- [8] Gugat M., Leugering G., Global boundary controllability of the de St. Venant equations between steady states, Inst. H. Poincaré Anal. Non Linéaire20 (2003) 1-11. Zbl1032.93030MR1958159
- [9] Gugat M., Leugering G., Schmidt E.J.P.G., Global controllability between steady supercritical flows in channel networks, Math. Methods Appl. Sci.27 (2004) 781-802. Zbl1047.93028MR2055319
- [10] Leugering G., Georg Schmidt E.J.P., On the modelling and stabilisation of flows in networks of open canals, SIAM J. Control Optim.41 (2002) 164-180. Zbl1024.76009MR1920161
- [11] Li T., Exact boundary controllability of unsteady flows in a network of open canals, Math. Nachr.278 (2005) 278-289. Zbl1066.93005MR2110532
- [12] Lions J.L., Exact controllability, stabilization and perturbations of distributed systems, SIAM Rev.30 (1988) 1-68. Zbl0644.49028MR931277
- [13] Roberson J.A., Cassidy J.J., Chaudhry M.H., Hydraulic Engineering, John Wiley, New York, 1995.
- [14] Wang Z., Li T., Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form, Int. J. Dynamical Systems and Differential Equations1 (2007) 12-19. Zbl1168.35388MR2492242
- [15] Li T., Rao B., Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim.41 (2003) 1748-1755. Zbl1032.35124MR1972532
- [16] Li T., Yi J., Semi-global solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chinese Ann. Math.22 (2001) 325-336. Zbl1005.35058MR1845753
- [17] Wang Z., Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B27 (2006) 643-656. Zbl1197.93062MR2273803
- [18] Zuazua E., Controllability of partial differential equations: Some results and open problems, in: Dafermos C., Feireisl E. (Eds.), Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 2006.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.