Global boundary controllability of the Saint-Venant system for sloped canals with friction

M. Gugat; G. Leugering

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 257-270
  • ISSN: 0294-1449

How to cite

top

Gugat, M., and Leugering, G.. "Global boundary controllability of the Saint-Venant system for sloped canals with friction." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 257-270. <http://eudml.org/doc/78839>.

@article{Gugat2009,
author = {Gugat, M., Leugering, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global controllability; nonlinear hyperbolic system; Saint-Venant equation; source term; friction; slope},
language = {eng},
number = {1},
pages = {257-270},
publisher = {Elsevier},
title = {Global boundary controllability of the Saint-Venant system for sloped canals with friction},
url = {http://eudml.org/doc/78839},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Gugat, M.
AU - Leugering, G.
TI - Global boundary controllability of the Saint-Venant system for sloped canals with friction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 257
EP - 270
LA - eng
KW - global controllability; nonlinear hyperbolic system; Saint-Venant equation; source term; friction; slope
UR - http://eudml.org/doc/78839
ER -

References

top
  1. [1] Cirina M., Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control7 (1969) 198-212. Zbl0182.20203MR254408
  2. [2] Cirina M., Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math. J.17 (1970) 193-209. Zbl0201.42702MR271546
  3. [3] de Halleux J., Prieur C., Coron J.-M., d'Andréa Novel B., Bastin G., Boundary feedback control in networks of open channels, Automatica39 (2003) 1365-1376. Zbl1175.93108MR2141681
  4. [4] de Saint-Venant B., Theorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l'introduction des marees dans leur lit, Comptes Rendus Academie des Sciences73 (1871) 148-154, 237–240. Zbl03.0482.04JFM03.0482.04
  5. [5] Graf W.H., Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998. 
  6. [6] Gugat M., Boundary controllability between sub- and supercritical flow, SIAM J. Control Optim.42 (2003) 1056-1070. Zbl1047.35087MR2002148
  7. [7] Gugat M., Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Modeling Optim.7 (2005) 9-37. Zbl1165.49307MR2304344
  8. [8] Gugat M., Leugering G., Global boundary controllability of the de St. Venant equations between steady states, Inst. H. Poincaré Anal. Non Linéaire20 (2003) 1-11. Zbl1032.93030MR1958159
  9. [9] Gugat M., Leugering G., Schmidt E.J.P.G., Global controllability between steady supercritical flows in channel networks, Math. Methods Appl. Sci.27 (2004) 781-802. Zbl1047.93028MR2055319
  10. [10] Leugering G., Georg Schmidt E.J.P., On the modelling and stabilisation of flows in networks of open canals, SIAM J. Control Optim.41 (2002) 164-180. Zbl1024.76009MR1920161
  11. [11] Li T., Exact boundary controllability of unsteady flows in a network of open canals, Math. Nachr.278 (2005) 278-289. Zbl1066.93005MR2110532
  12. [12] Lions J.L., Exact controllability, stabilization and perturbations of distributed systems, SIAM Rev.30 (1988) 1-68. Zbl0644.49028MR931277
  13. [13] Roberson J.A., Cassidy J.J., Chaudhry M.H., Hydraulic Engineering, John Wiley, New York, 1995. 
  14. [14] Wang Z., Li T., Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form, Int. J. Dynamical Systems and Differential Equations1 (2007) 12-19. Zbl1168.35388MR2492242
  15. [15] Li T., Rao B., Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim.41 (2003) 1748-1755. Zbl1032.35124MR1972532
  16. [16] Li T., Yi J., Semi-global solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chinese Ann. Math.22 (2001) 325-336. Zbl1005.35058MR1845753
  17. [17] Wang Z., Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B27 (2006) 643-656. Zbl1197.93062MR2273803
  18. [18] Zuazua E., Controllability of partial differential equations: Some results and open problems, in: Dafermos C., Feireisl E. (Eds.), Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 2006. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.