On the geometry of null cones in Einstein-vacuum spacetimes
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 285-328
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWang, Qian. "On the geometry of null cones in Einstein-vacuum spacetimes." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 285-328. <http://eudml.org/doc/78841>.
@article{Wang2009,
author = {Wang, Qian},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {285-328},
publisher = {Elsevier},
title = {On the geometry of null cones in Einstein-vacuum spacetimes},
url = {http://eudml.org/doc/78841},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Wang, Qian
TI - On the geometry of null cones in Einstein-vacuum spacetimes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 285
EP - 328
LA - eng
UR - http://eudml.org/doc/78841
ER -
References
top- [1] Choquet-Bruhat Y., Théorème d'existence pour certains systemes d'équations aux dérivées partielles nonlinéaires, Acta Math.88 (1952) 141-225. Zbl0049.19201MR53338
- [2] Christodoulou D., Klainerman S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, Princeton, 1993. Zbl0827.53055MR1316662
- [3] Hawking S.W., Ellis G.F.R., The Large Scale Structure of Space–Time, Cambridge Monographs on Mathematical Physics, 1973. Zbl0265.53054MR424186
- [4] Klainerman S., Francesco N., The Evolution Problem in General Relativity, Birkhäuser, 2003. Zbl1010.83004MR1946854
- [5] Klainerman S., Machedon M., Space–time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math.46 (1993) 1221-1268. Zbl0803.35095MR1231427
- [6] S. Klainerman, I. Rodnianski, Unpublished notes, 2003.
- [7] Klainerman S., Rodnianski I., Rough solutions to the Einstein vacuum equations, Ann. of Math.161 (2005) 1143-1193. Zbl1089.83006MR2180400
- [8] Klainerman S., Rodnianski I., The causal structure of microlocalized rough Einstein metrics, Ann. of Math.161 (2005) 1195-1243. Zbl1089.83007MR2180401
- [9] Klainerman S., Rodnianski I., Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math.159 (3) (2005) 437-529. Zbl1136.58018MR2125732
- [10] Klainerman S., Rodnianski I., Bilinear estimates on curved space–times, J. Hyperbolic Differential Equations2 (2005) 279-291. Zbl1284.58018MR2151111
- [11] Klainerman S., Rodnianski I., Sharp Trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal.16 (1) (2006) 164-229. Zbl1206.35081MR2221255
- [12] Klainerman S., Rodnianski I., A geometric Littlewood–Paley theory, Geom. Funct. Anal.16 (1) (2006) 126-163. Zbl1206.35080MR2221254
- [13] S. Klainerman, I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc., to appear. Zbl1198.53057MR2393426
- [14] Klainerman S., Rodnianski I., A Kirchoff–Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differential Equations4 (3) (2007) 401-433. Zbl1148.35042MR2339803
- [15] Klainerman S., Rodnianski I., On the breakdown criterion in general relativity, http://arXiv:0801.1709. Zbl1203.35084
- [16] Poisson E., The motion of point particles in curved spacetimes, www.livingreviews.org/lrr-2004-6. Zbl1071.83011
- [17] Stein E.M., Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Annals of Mathematics Studies, vol. 63, Princeton University Press, 1970. Zbl0193.10502MR252961
- [18] Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, Monographs in Harmonic Analysis III. Zbl0821.42001MR1232192
- [19] Tao T., Harmonic analysis in the phase plane, Lecture notes 254A, http://www.math.ucla.edu/~tao.
- [20] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995. Zbl0830.46028MR1328645
- [21] Wald R.M., General Relativity, University of Chicago Press, 1984. Zbl0549.53001MR757180
- [22] Q. Wang, Causal geometry of Einstein-vacuum spacetimes, Ph.D thesis of Princeton University, 2006. MR2624235
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.