On weakly harmonic maps from Finsler to riemannian manifolds

Heiko von der Mosel; Sven Winklmann

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 39-57
  • ISSN: 0294-1449

How to cite

top

von der Mosel, Heiko, and Winklmann, Sven. "On weakly harmonic maps from Finsler to riemannian manifolds." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 39-57. <http://eudml.org/doc/78843>.

@article{vonderMosel2009,
author = {von der Mosel, Heiko, Winklmann, Sven},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Finsler manifold; harmonic map; interior regularity},
language = {eng},
number = {1},
pages = {39-57},
publisher = {Elsevier},
title = {On weakly harmonic maps from Finsler to riemannian manifolds},
url = {http://eudml.org/doc/78843},
volume = {26},
year = {2009},
}

TY - JOUR
AU - von der Mosel, Heiko
AU - Winklmann, Sven
TI - On weakly harmonic maps from Finsler to riemannian manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 39
EP - 57
LA - eng
KW - Finsler manifold; harmonic map; interior regularity
UR - http://eudml.org/doc/78843
ER -

References

top
  1. [1] Bao D., Lackey B., A Hodge decomposition theorem for Finsler spaces, C. R. Acad. Sci. Paris Ser. I Math.323 (1996) 51-56. Zbl0852.53051MR1401628
  2. [2] Bao D., Chern S.S., Shen Z., An Introduction to Riemann Finsler Geometry, Graduate Texts in Mathematics, vol. 200, Springer, Berlin, Heidelberg, New York, 2000. Zbl0954.53001MR1747675
  3. [3] Caffarelli L.A., Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math.35 (1982) 833-838. Zbl0496.35035MR673831
  4. [4] Centore P., Finsler Laplacians and minimal-energy maps, Internat. J. Math.11 (2000) 1-13. Zbl1110.58307MR1757888
  5. [5] Eells J., Fuglede B., Harmonic Maps Between Riemannian Polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, Cambridge, 2001. Zbl0979.31001MR1848068
  6. [6] Fuglede B., Hölder continuity of harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature, Calc. Var.16 (2003) 375-403. Zbl1025.31004MR1971035
  7. [7] Fuglede B., The Dirichlet problem for harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature, Trans. AMS357 (2005) 757-792. Zbl1061.31008MR2095630
  8. [8] Fuglede B., Harmonic maps from Riemannian polyhedra to geodesic spaces with curvature bounded from above, Calc. Var.31 (2008) 99-136. Zbl1133.58004MR2342616
  9. [9] Giaquinta M., Hildebrandt S., A priori estimates for harmonic mappings, J. Reine Angew. Math.336 (1982) 124-164. Zbl0508.58015MR671325
  10. [10] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 ed., Springer, Berlin, New York, 2001. Zbl0361.35003MR1814364
  11. [11] Gromoll D., Klingenberg W., Meyer W., Riemannsche Geometrie im Großen, Lecture Notes Math., vol. 55, Springer, Berlin, Heidelberg, 1968. Zbl0293.53001
  12. [12] Hildebrandt S., Kaul H., Widman K.-O., Dirichlet's boundary value problem for harmonic mappings of Riemannian manifolds, Math. Z.147 (1976) 225-236. Zbl0313.31015MR407892
  13. [13] Hildebrandt S., Widman K.-O., Some regularity results for quasilinear elliptic systems of second order, Math. Z.142 (1975) 67-86. Zbl0317.35040MR377273
  14. [14] Hildebrandt S., Jost J., Widman K.-O., Harmonic mappings and minimal submanifolds, Invent. Math.62 (1980/81) 269-298. Zbl0446.58006MR595589
  15. [15] Hildebrandt S., Harmonic mappings of Riemannian manifolds, in: Giusti E. (Ed.), Harmonic Mappings and Minimal Immersions, Montecatini, 1984, Lecture Notes in Math., vol. 1161, Springer, Berlin, 1985, pp. 1-117. Zbl0581.58011MR821968
  16. [16] Jäger W., Kaul H., Uniqueness and stability of harmonic maps and their Jacobi fields, Man. Math.28 (1979) 269-291. Zbl0413.31006MR535705
  17. [17] Jost J., Eine geometrische Bemerkung zu Sätzen über harmonische Abbildungen, die ein Dirichletproblem lösen, Manuscripta Math.32 (1989) 51-57. Zbl0455.53036MR592709
  18. [18] Jost J., Equilibrium maps between metric spaces, Calc. Var.2 (1994) 173-204. Zbl0798.58021MR1385525
  19. [19] Jost J., Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv.70 (1995) 659-673. Zbl0852.58022MR1360608
  20. [20] Jost J., Nonpositive Curvature: Geometric and Analytic Aspects, Birkhäuser, Basel, 1997. Zbl0896.53002MR1451625
  21. [21] Jost J., Generalized Dirichlet forms and harmonic maps, Calc. Var.5 (1997) 1-19. Zbl0868.31009MR1424346
  22. [22] M. Meier, On quasilinear elliptic systems with quadratic growth, Preprint SFB 72 Univ. Bonn, 1984. 
  23. [23] Mo X., Harmonic maps from Finsler manifolds, Illinois J. Math.45 (2001) 1331-1345. Zbl0996.53047MR1895460
  24. [24] Moser J., On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961) 577-591. Zbl0111.09302MR159138
  25. [25] Payne L.E., Some comments on the past fifty years of isoperimetric inequalities, in: Everitt W.N. (Ed.), Inequalities – Fifty Years on from Hardy, Littlewood and Pólya, Lect. Notes Pure Appl. Math., vol. 129, Dekker, New York, Basel, Hong Kong, 1991, pp. 143-161. Zbl0723.52003MR1112577
  26. [26] Pingen M., A priori estimates for harmonic mappings, Analysis27 (2007) 387-404. Zbl1145.35056MR2373663
  27. [27] M. Pingen, Zur Regularitätstheorie elliptischer Systeme und harmonischer Abbildungen, Dissertation Univ. Duisburg–Essen, 2006. 
  28. [28] G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Ann. Math. Studies, vol. 27, 1951. Zbl0044.38301MR43486
  29. [29] Shen Y., Zhang Y., Second variation of harmonic maps between Finsler manifolds, Sci. China Ser. A47 (2004) 39-51. Zbl1217.53077MR2054666
  30. [30] Souza M., Spruck J., Tenenblat K., A Bernstein type theorem on a Randers space, Math. Ann.329 (2004) 291-305. Zbl1073.53014MR2060364
  31. [31] Tachikawa A., A partial regularity result for harmonic maps into a Finsler manifold, Calc. Var. Partial Differential Equations16 (2003) 217-224, erratum: 225–226. Zbl1023.49032
  32. [32] von der Mosel H., Winklmann S., On weakly harmonic maps from Finsler to Riemannian manifolds, Preprint 15 Institut f. Mathematik, RWTH Aachen 2006, see, http://www.instmath.rwth-aachen.de/, →preprints. Zbl1166.53050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.