Multiple positive solutions for a critical quasilinear equation via Morse theory

Silvia Cingolani; Giuseppina Vannella

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 397-413
  • ISSN: 0294-1449

How to cite

top

Cingolani, Silvia, and Vannella, Giuseppina. "Multiple positive solutions for a critical quasilinear equation via Morse theory." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 397-413. <http://eudml.org/doc/78848>.

@article{Cingolani2009,
author = {Cingolani, Silvia, Vannella, Giuseppina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-Laplace equation; critical exponent; perturbation; Morse theory; critical groups},
language = {eng},
number = {2},
pages = {397-413},
publisher = {Elsevier},
title = {Multiple positive solutions for a critical quasilinear equation via Morse theory},
url = {http://eudml.org/doc/78848},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Cingolani, Silvia
AU - Vannella, Giuseppina
TI - Multiple positive solutions for a critical quasilinear equation via Morse theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 397
EP - 413
LA - eng
KW - -Laplace equation; critical exponent; perturbation; Morse theory; critical groups
UR - http://eudml.org/doc/78848
ER -

References

top
  1. [1] Alves C.O., Ding Y.H., Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl.279 (2003) 508-521. Zbl1290.35089MR1974041
  2. [2] Anane A., Simplicite et isolation de la premiere valeur du p-Laplacien avec poids, C. R. Acad. Sci. Paris Sér I Math.305 (1987) (2003) 725-728. Zbl0633.35061MR920052
  3. [3] Azorero J.G., Peral I., Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Comm. Partial Differential Equations12 (1987) 1389-1430. Zbl0637.35069MR912211
  4. [4] Azorero J.G., Peral I., Multiplicity of solutions for elliptic problems with critical exponents or with a symmetric term, Trans. Amer. Math. Soc.323 (1991) 77-895. Zbl0729.35051MR1083144
  5. [5] Benci V., A new approach to the Morse–Conley theory and some applications, Ann. Mat. Pura Appl.158 (1991) 231-305. Zbl0778.58011MR1131853
  6. [6] Benci V., Cerami G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal.114 (1991) 79-93. Zbl0727.35055MR1088278
  7. [7] Benci V., Cerami G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations2 (1994) 29-48. Zbl0822.35046MR1384393
  8. [8] Brezis H., Lieb E., A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
  9. [9] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
  10. [10] Chang K.C., Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math.34 (1981) 693-712. Zbl0444.58008MR622618
  11. [11] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
  12. [12] Chang K.C., Morse theory in nonlinear analysis, in: Ambrosetti A., Chang K.C., Ekeland I. (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, Singapore, 1998. Zbl0960.58006MR1703528
  13. [13] Cingolani S., Degiovanni M., Nontrivial solutions for p-Laplace equations with right hand side having p-linear growth at infinity, Comm. Partial Differential Equations30 (2005) 1191-1203. Zbl1162.35367MR2180299
  14. [14] Cingolani S., Lazzo M., Vannella G., Multiplicity results for a quasilinear elliptic system via Morse theory, Commun. Contemp. Math.7 (2005) 227-249. Zbl1079.58008MR2140551
  15. [15] Cingolani S., Vannella G., Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 271-292. Zbl1023.58004MR1961517
  16. [16] Cingolani S., Vannella G., Morse index computations for a class of functionals defined in Banach spaces, in: Lupo D., Pagani C., Ruf B. (Eds.), Nonlinear Equations: Methods, Models and Applications, Bergamo 2001, Progr. Nonlinear Differential Equations Appl., vol. 54, Birkhäuser, Boston, 2003, pp. 107-116. Zbl1044.58014MR2023236
  17. [17] Cingolani S., Vannella G., Marino–Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in Banach spaces, Ann. Mat. Pura Appl.186 (2007) 157-185. Zbl1232.58006MR2263895
  18. [18] Cingolani S., Vannella G., Morse index and critical groups for p-Laplace equations with critical exponents, Mediterr. J. Math.3 (2006) 495-512. Zbl1167.58305MR2274740
  19. [19] Day M.M., Normed Linear Spaces, Springer-Verlag, Berlin, 1973. Zbl0268.46013MR344849
  20. [20] Degiovanni M., Lancelotti S., Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007) 907-919. Zbl1132.35040MR2371112
  21. [21] M. Degiovanni, S. Lancelotti, in preparation. 
  22. [22] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998. Zbl0562.35001
  23. [23] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. T.M.A.13 (1989) 879-902. Zbl0714.35032MR1009077
  24. [24] Lazzo M., Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev, C. R. Acad. Sci. Paris Sér. I Math.314 (1992) 61-64. Zbl0761.35021MR1149640
  25. [25] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988) 1203-1219. Zbl0675.35042MR969499
  26. [26] Marino A., Prodi G., Metodi perturbativi nella teoria di Morse, Boll. U.M.I. (4)11 (Suppl.) 3 (1975) 1-32. Zbl0311.58006MR418150
  27. [27] Noussair E.S., Swanson C.A., Jianfu Y., Quasilinear elliptic problems with critical exponents, Nonlinear Anal. T.M.A.20 (1993) 285-301. Zbl0785.35042MR1202205
  28. [28] Passaseo D., Multiplicity of positive solutions for the equation Δ u + λ u + u 2 * - 1 = 0 in noncontractible domains, Topol. Methods Nonlinear Anal.2 (1993) 343-366. Zbl0810.35029MR1251943
  29. [29] Perera K., Silva E.A.B., p-Laplacian problems with critical Sobolev exponents, Nonlinear Anal.66 (2007) 454-459. Zbl05115308MR2279538
  30. [30] Pohozaev S.I., Eigenfunctions for the equations Δ u + λ f u = 0 , Soviet Math. Dokl.6 (1965) 1408-1411. Zbl0141.30202
  31. [31] Rey O., A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal.13 (1989) 1241-1249. Zbl0702.35101MR1020729
  32. [32] Rey O., The role of Green's function in a nonlinear equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  33. [33] Silva E.A.B., Xavier M., Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2) (2003) 341-358. Zbl1030.35081MR1961520
  34. [34] Smale S., An infinite dimensional version of Sard's theorem, Amer. J. Math.87 (1965) 861-866. Zbl0143.35301MR185604
  35. [35] Struwe M., Variational Methods, third ed., Springer-Verlag, Berlin, 1998. Zbl0746.49010
  36. [36] Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984) 126-150. Zbl0488.35017MR727034
  37. [37] Tolksdorf P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations8 (1983) 773-817. Zbl0515.35024MR700735
  38. [38] Uhlenbeck K., Morse theory on Banach manifolds, J. Funct. Anal.10 (1972) 430-445. Zbl0241.58002MR377979
  39. [39] Vazquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12 (1984) 191-202. Zbl0561.35003MR768629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.