Multiple positive solutions for a critical quasilinear equation via Morse theory
Silvia Cingolani; Giuseppina Vannella
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 397-413
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCingolani, Silvia, and Vannella, Giuseppina. "Multiple positive solutions for a critical quasilinear equation via Morse theory." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 397-413. <http://eudml.org/doc/78848>.
@article{Cingolani2009,
author = {Cingolani, Silvia, Vannella, Giuseppina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-Laplace equation; critical exponent; perturbation; Morse theory; critical groups},
language = {eng},
number = {2},
pages = {397-413},
publisher = {Elsevier},
title = {Multiple positive solutions for a critical quasilinear equation via Morse theory},
url = {http://eudml.org/doc/78848},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Cingolani, Silvia
AU - Vannella, Giuseppina
TI - Multiple positive solutions for a critical quasilinear equation via Morse theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 397
EP - 413
LA - eng
KW - -Laplace equation; critical exponent; perturbation; Morse theory; critical groups
UR - http://eudml.org/doc/78848
ER -
References
top- [1] Alves C.O., Ding Y.H., Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl.279 (2003) 508-521. Zbl1290.35089MR1974041
- [2] Anane A., Simplicite et isolation de la premiere valeur du p-Laplacien avec poids, C. R. Acad. Sci. Paris Sér I Math.305 (1987) (2003) 725-728. Zbl0633.35061MR920052
- [3] Azorero J.G., Peral I., Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Comm. Partial Differential Equations12 (1987) 1389-1430. Zbl0637.35069MR912211
- [4] Azorero J.G., Peral I., Multiplicity of solutions for elliptic problems with critical exponents or with a symmetric term, Trans. Amer. Math. Soc.323 (1991) 77-895. Zbl0729.35051MR1083144
- [5] Benci V., A new approach to the Morse–Conley theory and some applications, Ann. Mat. Pura Appl.158 (1991) 231-305. Zbl0778.58011MR1131853
- [6] Benci V., Cerami G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal.114 (1991) 79-93. Zbl0727.35055MR1088278
- [7] Benci V., Cerami G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations2 (1994) 29-48. Zbl0822.35046MR1384393
- [8] Brezis H., Lieb E., A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
- [9] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
- [10] Chang K.C., Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math.34 (1981) 693-712. Zbl0444.58008MR622618
- [11] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
- [12] Chang K.C., Morse theory in nonlinear analysis, in: Ambrosetti A., Chang K.C., Ekeland I. (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, Singapore, 1998. Zbl0960.58006MR1703528
- [13] Cingolani S., Degiovanni M., Nontrivial solutions for p-Laplace equations with right hand side having p-linear growth at infinity, Comm. Partial Differential Equations30 (2005) 1191-1203. Zbl1162.35367MR2180299
- [14] Cingolani S., Lazzo M., Vannella G., Multiplicity results for a quasilinear elliptic system via Morse theory, Commun. Contemp. Math.7 (2005) 227-249. Zbl1079.58008MR2140551
- [15] Cingolani S., Vannella G., Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 271-292. Zbl1023.58004MR1961517
- [16] Cingolani S., Vannella G., Morse index computations for a class of functionals defined in Banach spaces, in: Lupo D., Pagani C., Ruf B. (Eds.), Nonlinear Equations: Methods, Models and Applications, Bergamo 2001, Progr. Nonlinear Differential Equations Appl., vol. 54, Birkhäuser, Boston, 2003, pp. 107-116. Zbl1044.58014MR2023236
- [17] Cingolani S., Vannella G., Marino–Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in Banach spaces, Ann. Mat. Pura Appl.186 (2007) 157-185. Zbl1232.58006MR2263895
- [18] Cingolani S., Vannella G., Morse index and critical groups for p-Laplace equations with critical exponents, Mediterr. J. Math.3 (2006) 495-512. Zbl1167.58305MR2274740
- [19] Day M.M., Normed Linear Spaces, Springer-Verlag, Berlin, 1973. Zbl0268.46013MR344849
- [20] Degiovanni M., Lancelotti S., Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007) 907-919. Zbl1132.35040MR2371112
- [21] M. Degiovanni, S. Lancelotti, in preparation.
- [22] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998. Zbl0562.35001
- [23] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. T.M.A.13 (1989) 879-902. Zbl0714.35032MR1009077
- [24] Lazzo M., Solutions positives multiples pour une équation elliptique non linéaire avec l'exposant critique de Sobolev, C. R. Acad. Sci. Paris Sér. I Math.314 (1992) 61-64. Zbl0761.35021MR1149640
- [25] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988) 1203-1219. Zbl0675.35042MR969499
- [26] Marino A., Prodi G., Metodi perturbativi nella teoria di Morse, Boll. U.M.I. (4)11 (Suppl.) 3 (1975) 1-32. Zbl0311.58006MR418150
- [27] Noussair E.S., Swanson C.A., Jianfu Y., Quasilinear elliptic problems with critical exponents, Nonlinear Anal. T.M.A.20 (1993) 285-301. Zbl0785.35042MR1202205
- [28] Passaseo D., Multiplicity of positive solutions for the equation in noncontractible domains, Topol. Methods Nonlinear Anal.2 (1993) 343-366. Zbl0810.35029MR1251943
- [29] Perera K., Silva E.A.B., p-Laplacian problems with critical Sobolev exponents, Nonlinear Anal.66 (2007) 454-459. Zbl05115308MR2279538
- [30] Pohozaev S.I., Eigenfunctions for the equations , Soviet Math. Dokl.6 (1965) 1408-1411. Zbl0141.30202
- [31] Rey O., A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal.13 (1989) 1241-1249. Zbl0702.35101MR1020729
- [32] Rey O., The role of Green's function in a nonlinear equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
- [33] Silva E.A.B., Xavier M., Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2) (2003) 341-358. Zbl1030.35081MR1961520
- [34] Smale S., An infinite dimensional version of Sard's theorem, Amer. J. Math.87 (1965) 861-866. Zbl0143.35301MR185604
- [35] Struwe M., Variational Methods, third ed., Springer-Verlag, Berlin, 1998. Zbl0746.49010
- [36] Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984) 126-150. Zbl0488.35017MR727034
- [37] Tolksdorf P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations8 (1983) 773-817. Zbl0515.35024MR700735
- [38] Uhlenbeck K., Morse theory on Banach manifolds, J. Funct. Anal.10 (1972) 430-445. Zbl0241.58002MR377979
- [39] Vazquez J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12 (1984) 191-202. Zbl0561.35003MR768629
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.