Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory
- Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 89-96
Access Full Article
topAbstract
topHow to cite
topVannella, Giuseppina. "Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 89-96. <http://eudml.org/doc/294900>.
@inProceedings{Vannella2017,
abstract = {},
author = {Vannella, Giuseppina},
booktitle = {Proceedings of Equadiff 14},
keywords = {Morse theory in Banach spaces, p-laplace equations, critical exponent, critical groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse index},
location = {Bratislava},
pages = {89-96},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory},
url = {http://eudml.org/doc/294900},
year = {2017},
}
TY - CLSWK
AU - Vannella, Giuseppina
TI - Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 89
EP - 96
AB -
KW - Morse theory in Banach spaces, p-laplace equations, critical exponent, critical groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse index
UR - http://eudml.org/doc/294900
ER -
References
top- Alves, C.O., Ding, Y.H., Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, , J. Math. Anal. Appl., 279 (2003), pp. 508–521. MR1974041
- Azorero, J.G., Peral, I., Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, , Comm. Partial Differential Equations, 12 (1987), pp. 1389–1430. MR0912211
- Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, , Comm. Pure Appl. Math., 36 (1983), pp. 437–477. MR0709644
- Chang, K. C., Morse theory on Banach space and its applications to partial differential equations, , Chinese Ann. Math. Ser. B, 4 (1983), pp. 381–399. MR0742038
- Chang, K. C., Infinite dimensional Morse theory and multiple solution problems, , Birkhäuser, Boston, MA, 1993. MR1196690
- Chang, K. C., Morse theory in nonlinear analysis, , in Nonlinear Functional Analysis and Applications to Differential Equations, A. Ambrosetti, K. C. Chang and I. Ekeland, eds., World Scientific Singapore, River Edge, NJ, 1998, pp. 60–101. MR1703528
- Cingolani, S., Degiovanni, M., HASH(0x16f78b0), Vannella, G., On the critical polynomial of functionals related to p-area () and p-Laplace () type operators, , Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), pp. 49–56. MR3345321
- Cingolani, S., Degiovanni, M., HASH(0x16f9a68), Vannella, G., Amann-Zehnder type results for p-Laplace problems, , Ann. Mat. Pura Appl., to appear. doi:10.1007/s10231-017-0694-8. MR3772919
- Cingolani, S., Lazzo, M., Vannella, G., Multiplicity results for a quasilinear elliptic system via Morse theory, , Commun. Contemp. Math., 7 (2005), pp. 227–249. MR2140551
- Cingolani, S., Vannella, G., Critical groups computations on a class of Sobolev Banach spaces via Morse index, , Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 271–292. MR1961517
- Cingolani, S., Vannella, G., Morse index and critical groups for p-Laplace equations with critical exponents, , Mediterr. J. Math., 3 (2006), pp. 495–512. MR2274740
- Cingolani, S., Vannella, G., Multiple positive solutions for a critical quasilinear equation via Morse theory, , Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 397–413. MR2504036
- Cingolani, S., Vannella, G., The Brezis-Nirenberg type problem for the p-laplacian (): multiple positive solutions, , in preparation.
- Guedda, M., Veron, L., Quasilinear elliptic equations involving critical Sobolev exponents, , Nonlinear Anal., 13 (1989), pp. 879–902. MR1009077
- Marino, A., Prodi, G., Metodi perturbativi nella teoria di Morse, , Boll. Un. Mat. Ital., 11(1975), pp. 1–32. MR0418150
- Mercuri, F., Palmieri, G., Problems in extending Morse theory to Banach spaces, , Boll. Un. Mat. Ital., 12 (1975), pp. 397–401. MR0405494
- Tromba, A. J., A general approach to Morse theory, , J. Differential Geometry, 12 (1977), pp. 47–85. MR0464304
- Uhlenbeck, K., Morse theory on Banach manifolds, , J. Functional Analysis, 10 (1972), pp. 430–445. MR0377979
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.