Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory

Vannella, Giuseppina

  • Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 89-96

How to cite

top

Vannella, Giuseppina. "Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 89-96. <http://eudml.org/doc/294900>.

@inProceedings{Vannella2017,
abstract = {},
author = {Vannella, Giuseppina},
booktitle = {Proceedings of Equadiff 14},
keywords = {Morse theory in Banach spaces, p-laplace equations, critical exponent, critical groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse index},
location = {Bratislava},
pages = {89-96},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory},
url = {http://eudml.org/doc/294900},
year = {2017},
}

TY - CLSWK
AU - Vannella, Giuseppina
TI - Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 89
EP - 96
AB -
KW - Morse theory in Banach spaces, p-laplace equations, critical exponent, critical groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse index
UR - http://eudml.org/doc/294900
ER -

References

top
  1. Alves, C.O., Ding, Y.H., Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, , J. Math. Anal. Appl., 279 (2003), pp. 508–521. MR1974041
  2. Azorero, J.G., Peral, I., Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, , Comm. Partial Differential Equations, 12 (1987), pp. 1389–1430. MR0912211
  3. Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, , Comm. Pure Appl. Math., 36 (1983), pp. 437–477. MR0709644
  4. Chang, K. C., Morse theory on Banach space and its applications to partial differential equations, , Chinese Ann. Math. Ser. B, 4 (1983), pp. 381–399. MR0742038
  5. Chang, K. C., Infinite dimensional Morse theory and multiple solution problems, , Birkhäuser, Boston, MA, 1993. MR1196690
  6. Chang, K. C., Morse theory in nonlinear analysis, , in Nonlinear Functional Analysis and Applications to Differential Equations, A. Ambrosetti, K. C. Chang and I. Ekeland, eds., World Scientific Singapore, River Edge, NJ, 1998, pp. 60–101. MR1703528
  7. Cingolani, S., Degiovanni, M., HASH(0x16f78b0), Vannella, G., On the critical polynomial of functionals related to p-area ( 1 < p < ) and p-Laplace ( 1 < p 2 ) type operators, , Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), pp. 49–56. MR3345321
  8. Cingolani, S., Degiovanni, M., HASH(0x16f9a68), Vannella, G., Amann-Zehnder type results for p-Laplace problems, , Ann. Mat. Pura Appl., to appear. doi:10.1007/s10231-017-0694-8. MR3772919
  9. Cingolani, S., Lazzo, M., Vannella, G., Multiplicity results for a quasilinear elliptic system via Morse theory, , Commun. Contemp. Math., 7 (2005), pp. 227–249. MR2140551
  10. Cingolani, S., Vannella, G., Critical groups computations on a class of Sobolev Banach spaces via Morse index, , Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 271–292. MR1961517
  11. Cingolani, S., Vannella, G., Morse index and critical groups for p-Laplace equations with critical exponents, , Mediterr. J. Math., 3 (2006), pp. 495–512. MR2274740
  12. Cingolani, S., Vannella, G., Multiple positive solutions for a critical quasilinear equation via Morse theory, , Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 397–413. MR2504036
  13. Cingolani, S., Vannella, G., The Brezis-Nirenberg type problem for the p-laplacian ( 1 < p < 2 ): multiple positive solutions, , in preparation. 
  14. Guedda, M., Veron, L., Quasilinear elliptic equations involving critical Sobolev exponents, , Nonlinear Anal., 13 (1989), pp. 879–902. MR1009077
  15. Marino, A., Prodi, G., Metodi perturbativi nella teoria di Morse, , Boll. Un. Mat. Ital., 11(1975), pp. 1–32. MR0418150
  16. Mercuri, F., Palmieri, G., Problems in extending Morse theory to Banach spaces, , Boll. Un. Mat. Ital., 12 (1975), pp. 397–401. MR0405494
  17. Tromba, A. J., A general approach to Morse theory, , J. Differential Geometry, 12 (1977), pp. 47–85. MR0464304
  18. Uhlenbeck, K., Morse theory on Banach manifolds, , J. Functional Analysis, 10 (1972), pp. 430–445. MR0377979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.