Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 625-648
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRodrigues, L. Miguel. "Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 625-648. <http://eudml.org/doc/78858>.
@article{Rodrigues2009,
author = {Rodrigues, L. Miguel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; weak inhomogeneity; self-similar variables; localized perturbations},
language = {eng},
number = {2},
pages = {625-648},
publisher = {Elsevier},
title = {Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid},
url = {http://eudml.org/doc/78858},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Rodrigues, L. Miguel
TI - Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 625
EP - 648
LA - eng
KW - Navier-Stokes equations; weak inhomogeneity; self-similar variables; localized perturbations
UR - http://eudml.org/doc/78858
ER -
References
top- [1] Danchin R., Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differential Equations9 (3–4) (2004) 353-386. Zbl1103.35085MR2100632
- [2] Danchin R., Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Rev. Mat. Iberoamericana21 (3) (2005) 861-886. Zbl1098.35038MR2231013
- [3] Desjardins B., Global existence results for the incompressible density-dependent Navier–Stokes equations in the whole space, Differential Integral Equations10 (3) (1997) 587-598. Zbl0902.76027MR1744863
- [4] Desjardins B., Linear transport equations with initial values in Sobolev spaces and application to the Navier–Stokes equations, Differential Integral Equations10 (3) (1997) 577-586. Zbl0902.76028MR1744862
- [5] Gallagher I., Gallay T., Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity, Math. Ann.332 (2) (2005) 287-327. Zbl1096.35102MR2178064
- [6] Gallagher I., Gallay T., Lions P.-L., On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity, Math. Nachr.278 (14) (2005) 1665-1672. Zbl1083.35092MR2176270
- [7] Gallay T., Wayne C.E., Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on , Arch. Ration. Mech. Anal.163 (3) (2002) 209-258. Zbl1042.37058MR1912106
- [8] Gallay T., Wayne C.E., Global stability of vortex solutions of the two-dimensional Navier–Stokes equation, Commun. Math. Phys.255 (1) (2005) 97-129. Zbl1139.35084MR2123378
- [9] Kato T., Ponce G., Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math.41 (7) (1988) 891-907. Zbl0671.35066MR951744
- [10] Lemarié-Rieusset P.G., Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. Zbl1034.35093MR1938147
- [11] Leray J., Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math.63 (1) (1934) 193-248. MR1555394JFM60.0726.05
- [12] Lions P.-L., Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996, Oxford Science Publications. Zbl0866.76002MR1422251
- [13] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.