A smoothing property for the -critical NLS equations and an application to blowup theory
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 745-762
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKeraani, Sahbi, and Vargas, Ana. "A smoothing property for the ${L}^{2}$-critical NLS equations and an application to blowup theory." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 745-762. <http://eudml.org/doc/78865>.
@article{Keraani2009,
author = {Keraani, Sahbi, Vargas, Ana},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {time dependent Schrodinger equation; blow-up; Bourgain spaces},
language = {eng},
number = {3},
pages = {745-762},
publisher = {Elsevier},
title = {A smoothing property for the $\{L\}^\{2\}$-critical NLS equations and an application to blowup theory},
url = {http://eudml.org/doc/78865},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Keraani, Sahbi
AU - Vargas, Ana
TI - A smoothing property for the ${L}^{2}$-critical NLS equations and an application to blowup theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 745
EP - 762
LA - eng
KW - time dependent Schrodinger equation; blow-up; Bourgain spaces
UR - http://eudml.org/doc/78865
ER -
References
top- [1] Bégout P., Vargas A., Mass concentration phenomena for the -critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc.359 (2007) 5257-5282. Zbl1171.35109MR2327030
- [2] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin, New York, 1976. Zbl0344.46071MR482275
- [3] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4)14 (2) (1981) 209-246. Zbl0495.35024MR631751
- [4] Bourgain J., On the restriction and the multiplier problem in , in: Geometrics Aspects of Functional Analysis, Springer Lecture Notes in Math., vol. 1469, 1991, pp. 179-191. Zbl0792.42004MR1122623
- [5] Bourgain J., Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN5 (1998) 253-283. Zbl0917.35126MR1616917
- [6] Carles R., Keraani S., Quadratic oscillations in NLS II. The -critical case, Trans. Amer. Math. Soc.359 (1) (2007) 33-62. Zbl1115.35119MR2247881
- [7] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003, American Mathematical Society, Providence, RI. Zbl1055.35003MR2002047
- [8] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett.9 (2002) 659-682. Zbl1152.35491MR1906069
- [9] Colliander J., Raynor S., Sulem C., Wright J.D., Ground state mass concentration in the -critical nonlinear Schrödinger equation below , Math. Res. Lett.12 (2–3) (2005) 357-375. Zbl1084.35088MR2150890
- [10] Constantin P., Saut J.C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1) (April 1988). Zbl0667.35061MR928265
- [11] Cordoba A., The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math.99 (1) (1977) 1-22. Zbl0384.42008MR447949
- [12] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness and polynomial bounds for the -critical nonlinear Schrödinger equation in , Preprint. Zbl1215.35151
- [13] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness for the -critical nonlinear Schrödinger equation in higher dimensions, Preprint, 2006. Zbl1152.35106
- [14] Y. Fang, M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in , Preprint, 2006. Zbl1122.35132MR2329384
- [15] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math.124 (1970) 9-36. Zbl0188.42601MR257819
- [16] Fefferman C., A note on spherical summation multipliers, Israel J. Math.15 (1973) 44-52. Zbl0262.42007MR320624
- [17] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain) (in French. French summary) (The Cauchy problem for periodic semilinear PDE in space variables (after Bourgain)), Seminaire Bourbaki, vol. 1994/95. Zbl0870.35096
- [18] Hmidi T., Keraani S., Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not.5 (2005) 2815-2828. Zbl1126.35067MR2180464
- [19] Hmidi T., Keraani S., Remarks on the blowup for the -critical nonlinear Schrödinger equations, SIAM J. Math. Anal.38 (4) (2006) 1035-1047. Zbl1122.35135MR2274472
- [20] Keraani S., On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal.235 (1) (2006) 171-192. Zbl1099.35132MR2216444
- [21] Merle F., Determination of blowup solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J.69 (2) (1993) 203-254. Zbl0808.35141MR1203233
- [22] Merle F., Construction of solutions with exactly k blowup points for nonlinear Schrödinger equations with critical nonlinearity, Commun. Math. Phys.129 (2) (1990) 223-240. Zbl0707.35021MR1048692
- [23] Merle F., Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, in: Proceedings of the International Congress of Mathematicians, vol. III, Berlin, 1998, Doc. Math., Extra vol. III, 1998, pp. 57-66. Zbl0896.35123MR1648140
- [24] Merle F., Raphael P., On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation, J. Amer. Math. Soc.19 (1) (2006) 37-90. Zbl1075.35077MR2169042
- [25] Merle F., Raphael P., On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. Math.156 (3) (2004) 565-672. Zbl1067.35110MR2061329
- [26] Merle F., Tsutsumi Y., concentration of blowup solutions for the nonlinear Schröinger equation with critical power nonlinearity, J. Differential Equations84 (2) (1990) 205-214. Zbl0722.35047MR1047566
- [27] Merle F., Vega L., Compactness at blowup time for solutions of the critical nonlinear Schrödinger equations in 2D, IMRN8 (1998) 399-425. Zbl0913.35126MR1628235
- [28] Moyua A., Vargas A., Vega L., Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not.16 (1996) 793-815. Zbl0868.35024MR1413873
- [29] Moyua A., Vargas A., Vega L., Restriction theorems and maximal operators related to oscillatory integrals in , Duke Math. J.96 (1999) 547-574. Zbl0946.42011MR1671214
- [30] Sjölin P., Regularity of solutions to the Schrödinger equations, Duke Math. J.55 (1987) 699-715. Zbl0631.42010MR904948
- [31] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
- [32] Tao T., A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal.13 (6) (2003) 1359-1384. Zbl1068.42011MR2033842
- [33] Tao T., Visan M., Zhang X., Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J.140 (1) (2007) 165-202. Zbl1187.35246MR2355070
- [34] T. Tao, M. Visan, X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, in press. Zbl1154.35085
- [35] Tzirakis N., Mass concentration phenomenon for the quintic nonlinear Schrödinger equation in 1D, SIAM J. Math. Anal.37 (6) (2006) 1923-1946, (electronic). Zbl1109.35106MR2213400
- [36] Vega L., Schrödinger equation: Pointwise convergence to the initial data, Proc. Amer. Math. Soc.102 (4) (1988) 874-878. Zbl0654.42014MR934859
- [37] Visan M., Zhang X., On the blowup for the -critical focusing nonlinear Schrödinger equation in higher dimensions below the energy class, SIAM J. Math. Anal.39 (1) (2007) 34-56. Zbl1135.35079MR2318374
- [38] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys.87 (1983) 567. Zbl0527.35023MR691044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.