A smoothing property for the L 2 -critical NLS equations and an application to blowup theory

Sahbi Keraani; Ana Vargas

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 745-762
  • ISSN: 0294-1449

How to cite

top

Keraani, Sahbi, and Vargas, Ana. "A smoothing property for the ${L}^{2}$-critical NLS equations and an application to blowup theory." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 745-762. <http://eudml.org/doc/78865>.

@article{Keraani2009,
author = {Keraani, Sahbi, Vargas, Ana},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {time dependent Schrodinger equation; blow-up; Bourgain spaces},
language = {eng},
number = {3},
pages = {745-762},
publisher = {Elsevier},
title = {A smoothing property for the $\{L\}^\{2\}$-critical NLS equations and an application to blowup theory},
url = {http://eudml.org/doc/78865},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Keraani, Sahbi
AU - Vargas, Ana
TI - A smoothing property for the ${L}^{2}$-critical NLS equations and an application to blowup theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 745
EP - 762
LA - eng
KW - time dependent Schrodinger equation; blow-up; Bourgain spaces
UR - http://eudml.org/doc/78865
ER -

References

top
  1. [1] Bégout P., Vargas A., Mass concentration phenomena for the L 2 -critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc.359 (2007) 5257-5282. Zbl1171.35109MR2327030
  2. [2] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin, New York, 1976. Zbl0344.46071MR482275
  3. [3] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4)14 (2) (1981) 209-246. Zbl0495.35024MR631751
  4. [4] Bourgain J., On the restriction and the multiplier problem in R 3 , in: Geometrics Aspects of Functional Analysis, Springer Lecture Notes in Math., vol. 1469, 1991, pp. 179-191. Zbl0792.42004MR1122623
  5. [5] Bourgain J., Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN5 (1998) 253-283. Zbl0917.35126MR1616917
  6. [6] Carles R., Keraani S., Quadratic oscillations in NLS II. The L 2 -critical case, Trans. Amer. Math. Soc.359 (1) (2007) 33-62. Zbl1115.35119MR2247881
  7. [7] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003, American Mathematical Society, Providence, RI. Zbl1055.35003MR2002047
  8. [8] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett.9 (2002) 659-682. Zbl1152.35491MR1906069
  9. [9] Colliander J., Raynor S., Sulem C., Wright J.D., Ground state mass concentration in the L 2 -critical nonlinear Schrödinger equation below H 1 , Math. Res. Lett.12 (2–3) (2005) 357-375. Zbl1084.35088MR2150890
  10. [10] Constantin P., Saut J.C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1) (April 1988). Zbl0667.35061MR928265
  11. [11] Cordoba A., The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math.99 (1) (1977) 1-22. Zbl0384.42008MR447949
  12. [12] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness and polynomial bounds for the L 2 -critical nonlinear Schrödinger equation in R , Preprint. Zbl1215.35151
  13. [13] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness for the L 2 -critical nonlinear Schrödinger equation in higher dimensions, Preprint, 2006. Zbl1152.35106
  14. [14] Y. Fang, M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in R 2 + 1 , Preprint, 2006. Zbl1122.35132MR2329384
  15. [15] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math.124 (1970) 9-36. Zbl0188.42601MR257819
  16. [16] Fefferman C., A note on spherical summation multipliers, Israel J. Math.15 (1973) 44-52. Zbl0262.42007MR320624
  17. [17] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain) (in French. French summary) (The Cauchy problem for periodic semilinear PDE in space variables (after Bourgain)), Seminaire Bourbaki, vol. 1994/95. Zbl0870.35096
  18. [18] Hmidi T., Keraani S., Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not.5 (2005) 2815-2828. Zbl1126.35067MR2180464
  19. [19] Hmidi T., Keraani S., Remarks on the blowup for the L 2 -critical nonlinear Schrödinger equations, SIAM J. Math. Anal.38 (4) (2006) 1035-1047. Zbl1122.35135MR2274472
  20. [20] Keraani S., On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal.235 (1) (2006) 171-192. Zbl1099.35132MR2216444
  21. [21] Merle F., Determination of blowup solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J.69 (2) (1993) 203-254. Zbl0808.35141MR1203233
  22. [22] Merle F., Construction of solutions with exactly k blowup points for nonlinear Schrödinger equations with critical nonlinearity, Commun. Math. Phys.129 (2) (1990) 223-240. Zbl0707.35021MR1048692
  23. [23] Merle F., Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, in: Proceedings of the International Congress of Mathematicians, vol. III, Berlin, 1998, Doc. Math., Extra vol. III, 1998, pp. 57-66. Zbl0896.35123MR1648140
  24. [24] Merle F., Raphael P., On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation, J. Amer. Math. Soc.19 (1) (2006) 37-90. Zbl1075.35077MR2169042
  25. [25] Merle F., Raphael P., On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation, Invent. Math.156 (3) (2004) 565-672. Zbl1067.35110MR2061329
  26. [26] Merle F., Tsutsumi Y., L 2 concentration of blowup solutions for the nonlinear Schröinger equation with critical power nonlinearity, J. Differential Equations84 (2) (1990) 205-214. Zbl0722.35047MR1047566
  27. [27] Merle F., Vega L., Compactness at blowup time for L 2 solutions of the critical nonlinear Schrödinger equations in 2D, IMRN8 (1998) 399-425. Zbl0913.35126MR1628235
  28. [28] Moyua A., Vargas A., Vega L., Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not.16 (1996) 793-815. Zbl0868.35024MR1413873
  29. [29] Moyua A., Vargas A., Vega L., Restriction theorems and maximal operators related to oscillatory integrals in R 3 , Duke Math. J.96 (1999) 547-574. Zbl0946.42011MR1671214
  30. [30] Sjölin P., Regularity of solutions to the Schrödinger equations, Duke Math. J.55 (1987) 699-715. Zbl0631.42010MR904948
  31. [31] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  32. [32] Tao T., A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal.13 (6) (2003) 1359-1384. Zbl1068.42011MR2033842
  33. [33] Tao T., Visan M., Zhang X., Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J.140 (1) (2007) 165-202. Zbl1187.35246MR2355070
  34. [34] T. Tao, M. Visan, X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, in press. Zbl1154.35085
  35. [35] Tzirakis N., Mass concentration phenomenon for the quintic nonlinear Schrödinger equation in 1D, SIAM J. Math. Anal.37 (6) (2006) 1923-1946, (electronic). Zbl1109.35106MR2213400
  36. [36] Vega L., Schrödinger equation: Pointwise convergence to the initial data, Proc. Amer. Math. Soc.102 (4) (1988) 874-878. Zbl0654.42014MR934859
  37. [37] Visan M., Zhang X., On the blowup for the L 2 -critical focusing nonlinear Schrödinger equation in higher dimensions below the energy class, SIAM J. Math. Anal.39 (1) (2007) 34-56. Zbl1135.35079MR2318374
  38. [38] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys.87 (1983) 567. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.