Existence of minimizers of free autonomous variational problems via solvability of constrained ones

Giovanni Cupini; Marcello Guidorzi; Cristina Marcelli

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1183-1205
  • ISSN: 0294-1449

How to cite

top

Cupini, Giovanni, Guidorzi, Marcello, and Marcelli, Cristina. "Existence of minimizers of free autonomous variational problems via solvability of constrained ones." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1183-1205. <http://eudml.org/doc/78885>.

@article{Cupini2009,
author = {Cupini, Giovanni, Guidorzi, Marcello, Marcelli, Cristina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonconvex problems; noncoercive problems; autonomous Lagrangians; constrained problems; relaxation; DuBois-Reymond condition},
language = {eng},
number = {4},
pages = {1183-1205},
publisher = {Elsevier},
title = {Existence of minimizers of free autonomous variational problems via solvability of constrained ones},
url = {http://eudml.org/doc/78885},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Cupini, Giovanni
AU - Guidorzi, Marcello
AU - Marcelli, Cristina
TI - Existence of minimizers of free autonomous variational problems via solvability of constrained ones
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1183
EP - 1205
LA - eng
KW - nonconvex problems; noncoercive problems; autonomous Lagrangians; constrained problems; relaxation; DuBois-Reymond condition
UR - http://eudml.org/doc/78885
ER -

References

top
  1. [1] Botteron B., Dacorogna B., Existence of solutions for a variational problem associated to models in optimal foraging theory, J. Math. Anal. Appl.147 (1990) 263-276. Zbl0717.49002MR1044699
  2. [2] Botteron B., Dacorogna B., Existence and nonexistence results for noncoercive variational problems and applications in ecology, J. Differential Equations85 (1990) 214-235. Zbl0714.49002MR1054549
  3. [3] Botteron B., Marcellini P., A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 197-223. Zbl0729.49002MR1096604
  4. [4] Celada P., Perrotta S., Existence of minimizers for nonconvex, noncoercive simple integrals, SIAM J. Control Optim.41 (2002) 1118-1140. Zbl1021.49011MR1972505
  5. [5] Cellina A., The classical problem of the calculus of variations in the autonomous case: relaxation and lipschitzianity of solutions, Trans. Amer. Math. Soc.356 (2004) 415-426. Zbl1064.49027MR2020039
  6. [6] Cellina A., Ferriero A., Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 911-919. Zbl1030.49039MR2008683
  7. [7] Cellina A., Treu G., Zagatti S., On the minimum problem for a class of noncoercive functionals, J. Differential Equations127 (1996) 225-262. Zbl0856.49010MR1387265
  8. [8] Clarke F.H., An indirect method in the calculus of variations, Trans. Amer. Math. Soc.336 (1993) 655-673. Zbl0780.49016MR1118823
  9. [9] Cupini G., Guidorzi M., Marcelli C., Necessary conditions and non-existence results for autonomous nonconvex variational problems, J. Differential Equations243 (2007) 329-348. Zbl1168.49006MR2371791
  10. [10] G. Cupini, C. Marcelli, Monotonicity properties of minimizers and relaxation for autonomous variational problems, Università Politecnica delle Marche, preprint, 1, 2008. Zbl1213.49028
  11. [11] Dacorogna B., Introduction to the Calculus of Variations, Imperial College Press, London, 2004. Zbl1159.49001MR2162819
  12. [12] Fusco N., Marcellini P., Ornelas A., Existence of minimizers for some non convex one dimensional integrals, Portugal. Math.55 (1998) 167-185. Zbl0912.49015MR1629622
  13. [13] Marcelli C., Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers, SIAM J. Control Optim.40 (2002) 1473-1490. Zbl1030.49022MR1882803
  14. [14] Marcelli C., Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints, Trans. Amer. Math. Soc.360 (2008) 5201-5227. Zbl1148.49025MR2415071
  15. [15] Marcellini P., Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità, Rend. Mat.13 (1980) 271-281. Zbl0454.49015
  16. [16] Ornelas A., Existence of scalar minimizers for nonconvex simple integrals of sum type, J. Math. Anal. Appl.221 (1998) 559-573. Zbl0920.49026MR1621754
  17. [17] Raymond J.P., Existence and uniqueness results for minimization problems with nonconvex functionals, J. Optim. Theory Appl.82 (1994) 571-592. Zbl0808.49002MR1290664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.