Existence of minimizers of free autonomous variational problems via solvability of constrained ones
Giovanni Cupini; Marcello Guidorzi; Cristina Marcelli
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1183-1205
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCupini, Giovanni, Guidorzi, Marcello, and Marcelli, Cristina. "Existence of minimizers of free autonomous variational problems via solvability of constrained ones." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1183-1205. <http://eudml.org/doc/78885>.
@article{Cupini2009,
author = {Cupini, Giovanni, Guidorzi, Marcello, Marcelli, Cristina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonconvex problems; noncoercive problems; autonomous Lagrangians; constrained problems; relaxation; DuBois-Reymond condition},
language = {eng},
number = {4},
pages = {1183-1205},
publisher = {Elsevier},
title = {Existence of minimizers of free autonomous variational problems via solvability of constrained ones},
url = {http://eudml.org/doc/78885},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Cupini, Giovanni
AU - Guidorzi, Marcello
AU - Marcelli, Cristina
TI - Existence of minimizers of free autonomous variational problems via solvability of constrained ones
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1183
EP - 1205
LA - eng
KW - nonconvex problems; noncoercive problems; autonomous Lagrangians; constrained problems; relaxation; DuBois-Reymond condition
UR - http://eudml.org/doc/78885
ER -
References
top- [1] Botteron B., Dacorogna B., Existence of solutions for a variational problem associated to models in optimal foraging theory, J. Math. Anal. Appl.147 (1990) 263-276. Zbl0717.49002MR1044699
- [2] Botteron B., Dacorogna B., Existence and nonexistence results for noncoercive variational problems and applications in ecology, J. Differential Equations85 (1990) 214-235. Zbl0714.49002MR1054549
- [3] Botteron B., Marcellini P., A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 197-223. Zbl0729.49002MR1096604
- [4] Celada P., Perrotta S., Existence of minimizers for nonconvex, noncoercive simple integrals, SIAM J. Control Optim.41 (2002) 1118-1140. Zbl1021.49011MR1972505
- [5] Cellina A., The classical problem of the calculus of variations in the autonomous case: relaxation and lipschitzianity of solutions, Trans. Amer. Math. Soc.356 (2004) 415-426. Zbl1064.49027MR2020039
- [6] Cellina A., Ferriero A., Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 911-919. Zbl1030.49039MR2008683
- [7] Cellina A., Treu G., Zagatti S., On the minimum problem for a class of noncoercive functionals, J. Differential Equations127 (1996) 225-262. Zbl0856.49010MR1387265
- [8] Clarke F.H., An indirect method in the calculus of variations, Trans. Amer. Math. Soc.336 (1993) 655-673. Zbl0780.49016MR1118823
- [9] Cupini G., Guidorzi M., Marcelli C., Necessary conditions and non-existence results for autonomous nonconvex variational problems, J. Differential Equations243 (2007) 329-348. Zbl1168.49006MR2371791
- [10] G. Cupini, C. Marcelli, Monotonicity properties of minimizers and relaxation for autonomous variational problems, Università Politecnica delle Marche, preprint, 1, 2008. Zbl1213.49028
- [11] Dacorogna B., Introduction to the Calculus of Variations, Imperial College Press, London, 2004. Zbl1159.49001MR2162819
- [12] Fusco N., Marcellini P., Ornelas A., Existence of minimizers for some non convex one dimensional integrals, Portugal. Math.55 (1998) 167-185. Zbl0912.49015MR1629622
- [13] Marcelli C., Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers, SIAM J. Control Optim.40 (2002) 1473-1490. Zbl1030.49022MR1882803
- [14] Marcelli C., Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints, Trans. Amer. Math. Soc.360 (2008) 5201-5227. Zbl1148.49025MR2415071
- [15] Marcellini P., Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità, Rend. Mat.13 (1980) 271-281. Zbl0454.49015
- [16] Ornelas A., Existence of scalar minimizers for nonconvex simple integrals of sum type, J. Math. Anal. Appl.221 (1998) 559-573. Zbl0920.49026MR1621754
- [17] Raymond J.P., Existence and uniqueness results for minimization problems with nonconvex functionals, J. Optim. Theory Appl.82 (1994) 571-592. Zbl0808.49002MR1290664
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.