Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case

A. Cellina; A. Ferriero

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 6, page 911-919
  • ISSN: 0294-1449

How to cite

top

Cellina, A., and Ferriero, A.. "Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 911-919. <http://eudml.org/doc/78604>.

@article{Cellina2003,
author = {Cellina, A., Ferriero, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variations; existence and Lipschitzianity of solutions; functional integral},
language = {eng},
number = {6},
pages = {911-919},
publisher = {Elsevier},
title = {Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case},
url = {http://eudml.org/doc/78604},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Cellina, A.
AU - Ferriero, A.
TI - Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 911
EP - 919
LA - eng
KW - calculus of variations; existence and Lipschitzianity of solutions; functional integral
UR - http://eudml.org/doc/78604
ER -

References

top
  1. [1] A. Cellina, Reparametrizations and the non-occurrence of the Lavrentiev phenomenon in the autonomous case of the calculus of variations, Preprint, 2001. 
  2. [2] A. Cellina, The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc., submitted for publication. Zbl1064.49027MR2020039
  3. [3] Cellina A., Treu G., Zagatti S., On the minimum problem for a class of non-coercive functionals, J. Differential Equations127 (1996) 225-262. Zbl0856.49010MR1387265
  4. [4] Cesari L., Optimization, Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
  5. [5] Clarke F.H., Vinter R.B., Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc.289 (1985) 73-98. Zbl0563.49009MR779053
  6. [6] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  7. [7] Serrin J., Varberg D.E., A general chain rule for derivatives and the change of variable formula for the Lebesgue integral, Amer. Math. Monthly76 (1969) 514-520. Zbl0175.34401MR247011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.