Continuation of relative periodic orbits in a class of triatomic hamiltonian systems
Guillaume James; Pascal Noble; Yannick Sire
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1237-1264
- ISSN: 0294-1449
Access Full Article
topHow to cite
topJames, Guillaume, Noble, Pascal, and Sire, Yannick. "Continuation of relative periodic orbits in a class of triatomic hamiltonian systems." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1237-1264. <http://eudml.org/doc/78888>.
@article{James2009,
author = {James, Guillaume, Noble, Pascal, Sire, Yannick},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {continuation of relative periodic orbits; Euclidean-invariant Hamiltonian systems; infinite mass ratio limit},
language = {eng},
number = {4},
pages = {1237-1264},
publisher = {Elsevier},
title = {Continuation of relative periodic orbits in a class of triatomic hamiltonian systems},
url = {http://eudml.org/doc/78888},
volume = {26},
year = {2009},
}
TY - JOUR
AU - James, Guillaume
AU - Noble, Pascal
AU - Sire, Yannick
TI - Continuation of relative periodic orbits in a class of triatomic hamiltonian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1237
EP - 1264
LA - eng
KW - continuation of relative periodic orbits; Euclidean-invariant Hamiltonian systems; infinite mass ratio limit
UR - http://eudml.org/doc/78888
ER -
References
top- [1] Abraham R., Marsden J.E., Foundations of Mechanics, second ed., Addison-Wesley Publishing Company, 1987. Zbl0393.70001MR515141
- [2] Arnol'd V.I., Ordinary Differential Equations, Springer-Verlag, 1992. Zbl0744.34001MR1162307
- [3] Aubry S., Discrete breathers in anharmonic models with acoustic phonons, Ann. Inst. H. Poincaré Phys. Théor.68 (1998) 381-420. Zbl0905.70017MR1634310
- [4] Buffoni B., Toland J., Analytic Theory of Global Bifurcation, Princeton Ser. Appl. Math., 2003. Zbl1021.47044MR1956130
- [5] Cretegny T., Livi R., Spicci M., Breather dynamics in diatomic FPU chains, Physica D119 (1998) 88-98.
- [6] Dhooge A., Govaerts W., Kuznetsov Yu.A., MATCONT: A Matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software29 (2) (2003) 141-164, Software cl_matcont available at:, http://www.matcont.ugent.be/. Zbl1070.65574MR2000880
- [7] Doedel E.J. et al. , Computation of periodic solutions of conservative systems with application to the 3-body problem, Int. J. Bifurcation and Chaos13 (6) (2003) 1353-1381. Zbl1129.70316MR1992054
- [8] Fura J., Rybicki S., Periodic solutions of second order Hamiltonian systems bifurcating from infinity, Ann. Institut H. Poincaré Anal. Non Linéaire24 (3) (2007) 471-490. Zbl1129.37034MR2321202
- [9] Iooss G., Joseph D.D., Elementary Stability and Bifurcation Theory, Springer, 1980. Zbl0443.34001MR636256
- [10] James G., Noble P., Weak coupling limit and localized oscillations in Euclidean invariant Hamiltonian systems, J. Nonlinear Sci.18 (2008) 433-461. Zbl1200.70015MR2429682
- [11] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, 1966. Zbl0148.12601MR203473
- [12] Kielhöfer H., Bifurcation Theory. An Introduction with Applications to PDEs, Applied Mathematical Sciences, vol. 156, Springer-Verlag, 2004. Zbl1032.35001MR2004250
- [13] Kozin I.N., Pavlichenkov I.M., Bifurcation in rotational spectra of nonlinear molecules, J. Chem. Phys.104 (11) (1996) 4105-4113.
- [14] Kozin I.N., Roberts R.M., Tennyson J., Symmetry and structure of rotating , J. Chem. Phys.111 (1) (1999) 140-150.
- [15] Lerman E., Tokieda T., On relative normal modes, C. R. Acad. Sci. Paris, Sér. I328 (1999) 413-418. Zbl0939.37035MR1678139
- [16] Littlejohn R.G., Mitchell K.A., Aquilanti V., Cavalli S., Body frames and frame singularities for three-atom systems, Phys. Rev. A58 (5) (1998) 3705-3717.
- [17] Livi R., Spicci M., MacKay R.S., Breathers on a diatomic FPU chain, Nonlinearity10 (1997) 1421-1434. Zbl0917.70022MR1483550
- [18] MacKay R.S., Aubry S., Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity7 (1994) 1623-1643. Zbl0811.70017MR1304442
- [19] MacKay R.S., Optic discrete breathers in Euclidean invariant systems, I, J. Nonlin. Sci. Num. Sim.1 (2000) 99-103. Zbl1043.37510MR1754245
- [20] Marin J.L., Aubry S., Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit, Nonlinearity9 (1996) 1501-1528. Zbl0926.70028MR1419458
- [21] Marsden J.E., Hughes T., Mathematical Foundations of Elasticity, Dover Publications, 1994. Zbl0545.73031MR1262126
- [22] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. Zbl0676.58017MR982267
- [23] Meyer K.R., Periodic Solutions of the N-body Problem, Lecture Notes in Mathematics, vol. 1719, Springer-Verlag, 1999. Zbl0958.70001MR1736548
- [24] Montaldi J., Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques, C. R. Acad. Sci. Paris, Sér. I324 (1997) 553-558. Zbl0882.58044MR1443993
- [25] Montaldi J.A., Roberts R.M., Relative equilibria of molecules, J. Nonlinear Sci.9 (1999) 53-88. Zbl0932.70015MR1656378
- [26] Moser J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math.29 (1976) 727-747. Zbl0346.34024MR426052
- [27] Muñoz-Almaraz F.J. et al. , Continuation of periodic orbits in conservative and Hamiltonian systems, Physica D181 (2003) 1-38. Zbl1024.37037MR2003792
- [28] Ortega J.-P., Relative normal modes for nonlinear Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 665-704. Zbl1061.70011MR1983693
- [29] Ortega J.-P., Ratiu T.S., Persistance et différentiabilité de l'ensemble des éléments critiques relatifs dans les systèmes hamiltoniens symétriques, C. R. Acad. Sci. Paris, Sér. I325 (1997) 1107-1111. Zbl1065.70509MR1614032
- [30] Prosmiti R., Farantos S.C., Periodic orbits, bifurcation diagrams and the spectroscopy of system, J. Chem. Phys.103 (9) (1995) 3299-3314.
- [31] Prosmiti R., Farantos S.C., Guo H., Assigning the transition from normal to local vibrational mode in by periodic orbits, Chem. Phys. Lett.311 (1999) 241-247.
- [32] Prosmiti R. et al. , A combined classical/quantum study of the photodissociation dynamics of near the dissociation limit, Chem. Phys. Lett.359 (2002) 229-236.
- [33] Roberts R.M., Sousa Dias M.E.R., Bifurcation of relative equilibria, Nonlinearity10 (1997) 1719-1738. Zbl0908.58046MR1483562
- [34] Sbano L., Symmetric solutions in molecular potentials, in: Gaeta G., Prinari B., Rauch S., Terracini S. (Eds.), Symmetry And Perturbation Theory SPT2004, Proceedings of Cala Gonone workshop, Italy, 30 May–6 June 2004, World Scientific, 2005. Zbl1135.37325MR2331233
- [35] L. Sbano, J. Southall, Periodic solutions of the N-body problem with Lennard–Jones potential, Mathematics Institute preprint, Univ. Warwick, 2007. Zbl1257.70017
- [36] Schmidt D.S., Hopf's bifurcation theorem and the center theorem of Liapunov, in: Marsden J.E., McCracken M. (Eds.), The Hopf Bifurcation Theorem and its Applications, Appl. Math. Sci., vol. 19, Springer, New York, 1976, pp. 95-104.
- [37] Sepulchre J.-A., MacKay R.S., Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity10 (1997) 679-713. Zbl0905.39004MR1448582
- [38] Weinstein A., Normal modes for nonlinear Hamiltonian systems, Invent. Math.20 (1973) 47-57. Zbl0264.70020MR328222
- [39] Wulff C., Persistence of relative equilibria in Hamiltonian systems with noncompact symmetry, Nonlinearity16 (2003) 67-91. Zbl1030.37039MR1950776
- [40] Wulff C., Persistence of Hamiltonian relative periodic orbits, J. Geom. Phys.48 (2003) 309-338. Zbl1038.37045MR2007598
- [41] Yanao T., Takatsuka K., Kinematic effects associated with molecular frames in structural isomerization dynamics of clusters, J. Chem. Phys.120 (2004) 8924-8936.
- [42] Yanao T., Koon W.S., Marsden J.E., Kevrekidis I.G., Gyration-radius dynamics in structural transitions of atomic clusters, J. Chem. Phys.126 (2007) 124102.
- [43] Zevin A.A., Global continuation of Lyapunov centre orbits in Hamiltonian systems, Nonlinearity12 (1999) 1339-1349. Zbl0956.37015MR1710077
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.