Continuation of relative periodic orbits in a class of triatomic hamiltonian systems

Guillaume James; Pascal Noble; Yannick Sire

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1237-1264
  • ISSN: 0294-1449

How to cite

top

James, Guillaume, Noble, Pascal, and Sire, Yannick. "Continuation of relative periodic orbits in a class of triatomic hamiltonian systems." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1237-1264. <http://eudml.org/doc/78888>.

@article{James2009,
author = {James, Guillaume, Noble, Pascal, Sire, Yannick},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {continuation of relative periodic orbits; Euclidean-invariant Hamiltonian systems; infinite mass ratio limit},
language = {eng},
number = {4},
pages = {1237-1264},
publisher = {Elsevier},
title = {Continuation of relative periodic orbits in a class of triatomic hamiltonian systems},
url = {http://eudml.org/doc/78888},
volume = {26},
year = {2009},
}

TY - JOUR
AU - James, Guillaume
AU - Noble, Pascal
AU - Sire, Yannick
TI - Continuation of relative periodic orbits in a class of triatomic hamiltonian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1237
EP - 1264
LA - eng
KW - continuation of relative periodic orbits; Euclidean-invariant Hamiltonian systems; infinite mass ratio limit
UR - http://eudml.org/doc/78888
ER -

References

top
  1. [1] Abraham R., Marsden J.E., Foundations of Mechanics, second ed., Addison-Wesley Publishing Company, 1987. Zbl0393.70001MR515141
  2. [2] Arnol'd V.I., Ordinary Differential Equations, Springer-Verlag, 1992. Zbl0744.34001MR1162307
  3. [3] Aubry S., Discrete breathers in anharmonic models with acoustic phonons, Ann. Inst. H. Poincaré Phys. Théor.68 (1998) 381-420. Zbl0905.70017MR1634310
  4. [4] Buffoni B., Toland J., Analytic Theory of Global Bifurcation, Princeton Ser. Appl. Math., 2003. Zbl1021.47044MR1956130
  5. [5] Cretegny T., Livi R., Spicci M., Breather dynamics in diatomic FPU chains, Physica D119 (1998) 88-98. 
  6. [6] Dhooge A., Govaerts W., Kuznetsov Yu.A., MATCONT: A Matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software29 (2) (2003) 141-164, Software cl_matcont available at:, http://www.matcont.ugent.be/. Zbl1070.65574MR2000880
  7. [7] Doedel E.J. et al. , Computation of periodic solutions of conservative systems with application to the 3-body problem, Int. J. Bifurcation and Chaos13 (6) (2003) 1353-1381. Zbl1129.70316MR1992054
  8. [8] Fura J., Rybicki S., Periodic solutions of second order Hamiltonian systems bifurcating from infinity, Ann. Institut H. Poincaré Anal. Non Linéaire24 (3) (2007) 471-490. Zbl1129.37034MR2321202
  9. [9] Iooss G., Joseph D.D., Elementary Stability and Bifurcation Theory, Springer, 1980. Zbl0443.34001MR636256
  10. [10] James G., Noble P., Weak coupling limit and localized oscillations in Euclidean invariant Hamiltonian systems, J. Nonlinear Sci.18 (2008) 433-461. Zbl1200.70015MR2429682
  11. [11] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, 1966. Zbl0148.12601MR203473
  12. [12] Kielhöfer H., Bifurcation Theory. An Introduction with Applications to PDEs, Applied Mathematical Sciences, vol. 156, Springer-Verlag, 2004. Zbl1032.35001MR2004250
  13. [13] Kozin I.N., Pavlichenkov I.M., Bifurcation in rotational spectra of nonlinear AB 2 molecules, J. Chem. Phys.104 (11) (1996) 4105-4113. 
  14. [14] Kozin I.N., Roberts R.M., Tennyson J., Symmetry and structure of rotating H 3 + , J. Chem. Phys.111 (1) (1999) 140-150. 
  15. [15] Lerman E., Tokieda T., On relative normal modes, C. R. Acad. Sci. Paris, Sér. I328 (1999) 413-418. Zbl0939.37035MR1678139
  16. [16] Littlejohn R.G., Mitchell K.A., Aquilanti V., Cavalli S., Body frames and frame singularities for three-atom systems, Phys. Rev. A58 (5) (1998) 3705-3717. 
  17. [17] Livi R., Spicci M., MacKay R.S., Breathers on a diatomic FPU chain, Nonlinearity10 (1997) 1421-1434. Zbl0917.70022MR1483550
  18. [18] MacKay R.S., Aubry S., Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity7 (1994) 1623-1643. Zbl0811.70017MR1304442
  19. [19] MacKay R.S., Optic discrete breathers in Euclidean invariant systems, I, J. Nonlin. Sci. Num. Sim.1 (2000) 99-103. Zbl1043.37510MR1754245
  20. [20] Marin J.L., Aubry S., Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit, Nonlinearity9 (1996) 1501-1528. Zbl0926.70028MR1419458
  21. [21] Marsden J.E., Hughes T., Mathematical Foundations of Elasticity, Dover Publications, 1994. Zbl0545.73031MR1262126
  22. [22] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. Zbl0676.58017MR982267
  23. [23] Meyer K.R., Periodic Solutions of the N-body Problem, Lecture Notes in Mathematics, vol. 1719, Springer-Verlag, 1999. Zbl0958.70001MR1736548
  24. [24] Montaldi J., Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques, C. R. Acad. Sci. Paris, Sér. I324 (1997) 553-558. Zbl0882.58044MR1443993
  25. [25] Montaldi J.A., Roberts R.M., Relative equilibria of molecules, J. Nonlinear Sci.9 (1999) 53-88. Zbl0932.70015MR1656378
  26. [26] Moser J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math.29 (1976) 727-747. Zbl0346.34024MR426052
  27. [27] Muñoz-Almaraz F.J. et al. , Continuation of periodic orbits in conservative and Hamiltonian systems, Physica D181 (2003) 1-38. Zbl1024.37037MR2003792
  28. [28] Ortega J.-P., Relative normal modes for nonlinear Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 665-704. Zbl1061.70011MR1983693
  29. [29] Ortega J.-P., Ratiu T.S., Persistance et différentiabilité de l'ensemble des éléments critiques relatifs dans les systèmes hamiltoniens symétriques, C. R. Acad. Sci. Paris, Sér. I325 (1997) 1107-1111. Zbl1065.70509MR1614032
  30. [30] Prosmiti R., Farantos S.C., Periodic orbits, bifurcation diagrams and the spectroscopy of C 2 H 2 system, J. Chem. Phys.103 (9) (1995) 3299-3314. 
  31. [31] Prosmiti R., Farantos S.C., Guo H., Assigning the transition from normal to local vibrational mode in SO 2 by periodic orbits, Chem. Phys. Lett.311 (1999) 241-247. 
  32. [32] Prosmiti R. et al. , A combined classical/quantum study of the photodissociation dynamics of NeBr 2 B near the Br 2 B dissociation limit, Chem. Phys. Lett.359 (2002) 229-236. 
  33. [33] Roberts R.M., Sousa Dias M.E.R., Bifurcation of relative equilibria, Nonlinearity10 (1997) 1719-1738. Zbl0908.58046MR1483562
  34. [34] Sbano L., Symmetric solutions in molecular potentials, in: Gaeta G., Prinari B., Rauch S., Terracini S. (Eds.), Symmetry And Perturbation Theory SPT2004, Proceedings of Cala Gonone workshop, Italy, 30 May–6 June 2004, World Scientific, 2005. Zbl1135.37325MR2331233
  35. [35] L. Sbano, J. Southall, Periodic solutions of the N-body problem with Lennard–Jones potential, Mathematics Institute preprint, Univ. Warwick, 2007. Zbl1257.70017
  36. [36] Schmidt D.S., Hopf's bifurcation theorem and the center theorem of Liapunov, in: Marsden J.E., McCracken M. (Eds.), The Hopf Bifurcation Theorem and its Applications, Appl. Math. Sci., vol. 19, Springer, New York, 1976, pp. 95-104. 
  37. [37] Sepulchre J.-A., MacKay R.S., Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity10 (1997) 679-713. Zbl0905.39004MR1448582
  38. [38] Weinstein A., Normal modes for nonlinear Hamiltonian systems, Invent. Math.20 (1973) 47-57. Zbl0264.70020MR328222
  39. [39] Wulff C., Persistence of relative equilibria in Hamiltonian systems with noncompact symmetry, Nonlinearity16 (2003) 67-91. Zbl1030.37039MR1950776
  40. [40] Wulff C., Persistence of Hamiltonian relative periodic orbits, J. Geom. Phys.48 (2003) 309-338. Zbl1038.37045MR2007598
  41. [41] Yanao T., Takatsuka K., Kinematic effects associated with molecular frames in structural isomerization dynamics of clusters, J. Chem. Phys.120 (2004) 8924-8936. 
  42. [42] Yanao T., Koon W.S., Marsden J.E., Kevrekidis I.G., Gyration-radius dynamics in structural transitions of atomic clusters, J. Chem. Phys.126 (2007) 124102. 
  43. [43] Zevin A.A., Global continuation of Lyapunov centre orbits in Hamiltonian systems, Nonlinearity12 (1999) 1339-1349. Zbl0956.37015MR1710077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.