New isoperimetric estimates for solutions to Monge-Ampère equations

B. Brandolini; C. Nitsch; C. Trombetti

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1265-1275
  • ISSN: 0294-1449

How to cite

top

Brandolini, B., Nitsch, C., and Trombetti, C.. "New isoperimetric estimates for solutions to Monge-Ampère equations." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1265-1275. <http://eudml.org/doc/78889>.

@article{Brandolini2009,
author = {Brandolini, B., Nitsch, C., Trombetti, C.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {affine isoperimetric inequalities; Monge-Ampère equation; Dirichlet problems; eigenvalue},
language = {eng},
number = {4},
pages = {1265-1275},
publisher = {Elsevier},
title = {New isoperimetric estimates for solutions to Monge-Ampère equations},
url = {http://eudml.org/doc/78889},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Brandolini, B.
AU - Nitsch, C.
AU - Trombetti, C.
TI - New isoperimetric estimates for solutions to Monge-Ampère equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1265
EP - 1275
LA - eng
KW - affine isoperimetric inequalities; Monge-Ampère equation; Dirichlet problems; eigenvalue
UR - http://eudml.org/doc/78889
ER -

References

top
  1. [1] Alvino A., Lions P.-L., Trombetti G., On optimization problems with prescribed rearrangements, Nonlinear Anal.13 (2) (1989) 185-220. Zbl0678.49003MR979040
  2. [2] Alvino A., Lions P.-L., Trombetti G., Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (2) (1990) 37-65. Zbl0703.35007MR1051227
  3. [3] Burago Yu.D., Zalgaller V.A., Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften, vol. 285, Springer-Verlag, Berlin, 1988, Translated from the Russian by A.B. Sosinskiĭ, Springer Series in Soviet Mathematics. Zbl0633.53002MR936419
  4. [4] Delanoë Ph., Radially symmetric boundary value problems for real and complex elliptic Monge–Ampère equations, J. Differential Equations58 (3) (1985) 318-344. Zbl0564.35044MR797314
  5. [5] Freitas P., Krejčiřík D., A sharp upper bound for the first Dirichlet eigenvalue and the growth of the isoperimetric constant of convex domains, Proc. Amer. Math. Soc.136 (8) (2008) 2997-3006. Zbl1147.58030MR2399068
  6. [6] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
  7. [7] Lions P.-L., Two remarks on Monge–Ampère equations, Ann. Mat. Pura Appl. (4)142 (1985) 263-275. Zbl0594.35023MR839040
  8. [8] Lutwak E., On some affine isoperimetric inequalities, J. Differential Geom.23 (1) (1986) 1-13. Zbl0592.52005MR840399
  9. [9] Petty C.M., Affine isoperimetric problems, in: Discrete Geometry and Convexity, New York, 1982, Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 113-127. Zbl0576.52003MR809198
  10. [10] Pólya G., Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math.6 (1948) 267-277. Zbl0037.25301MR26817
  11. [11] Pólya G., Szegö G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, vol. 27, Princeton University Press, Princeton, NJ, 1951. Zbl0044.38301MR43486
  12. [12] Reilly R.C., On the Hessian of a function and the curvatures of its graph, Michigan Math. J.20 (1973) 373-383. Zbl0267.53003MR334045
  13. [13] Schneider R., Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. Zbl0798.52001MR1216521
  14. [14] Talenti G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)3 (4) (1976) 697-718. Zbl0341.35031MR601601
  15. [15] Talenti G., Some estimates of solutions to Monge–Ampère type equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)8 (2) (1981) 183-230. Zbl0467.35044MR623935
  16. [16] Talenti G., Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. B (6)4 (3) (1985) 917-949. Zbl0602.35025MR831299
  17. [17] Talenti G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. (4)120 (1979) 160-184. Zbl0419.35041MR551065
  18. [18] Trudinger N.S., On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math.488 (1997) 203-220. Zbl0883.52006MR1465371
  19. [19] Trudinger N.S., Wang X.J., A Poincaré type inequality for Hessian integrals, Calc. Var. Partial Differential Equations6 (4) (1998) 315-328. Zbl0927.58013MR1624292
  20. [20] Tso K., On a real Monge–Ampère functional, Invent. Math.101 (2) (1990) 425-448. Zbl0724.35040MR1062970
  21. [21] Tso K., Remarks on critical exponents for Hessian operators, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (2) (1990) 113-122. Zbl0715.35031MR1051232
  22. [22] Wang X.J., A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J.43 (1) (1994) 25-54. Zbl0805.35036MR1275451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.