Some estimates of solutions to Monge-Ampère type equations in dimension two
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)
- Volume: 8, Issue: 2, page 183-230
- ISSN: 0391-173X
Access Full Article
topHow to cite
topTalenti, Giorgio. "Some estimates of solutions to Monge-Ampère type equations in dimension two." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.2 (1981): 183-230. <http://eudml.org/doc/83856>.
@article{Talenti1981,
author = {Talenti, Giorgio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Monge-Ampere equation; level line; curvature; isoperimetric inequality; rearrangement; convexity},
language = {eng},
number = {2},
pages = {183-230},
publisher = {Scuola normale superiore},
title = {Some estimates of solutions to Monge-Ampère type equations in dimension two},
url = {http://eudml.org/doc/83856},
volume = {8},
year = {1981},
}
TY - JOUR
AU - Talenti, Giorgio
TI - Some estimates of solutions to Monge-Ampère type equations in dimension two
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 2
SP - 183
EP - 230
LA - eng
KW - Monge-Ampere equation; level line; curvature; isoperimetric inequality; rearrangement; convexity
UR - http://eudml.org/doc/83856
ER -
References
top- [1] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = ϕ, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom., 13 (1958). Zbl0114.30202
- [2] A.M. Ampère, Mémoire contenant l'application de la théorie ..., Journal de l'École Polytechnique (1820).
- [3] I . YA. Bakel'man, Generalized solutions of Monge-Ampère equations, Dokl. Akad. Nauk SSSR, 114 (1957). Zbl0114.29602MR95481
- [4] I. Ya. Bakel'man, On the theory of Monge-Ampère's equations, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom., 13 (1958). Zbl0078.08903MR96902
- [5] I . YA. Bakel'man, The Dirichlet problem for equations of Monge-Ampère type and their n-dimensionat analogues, Dokl. Akad. Nauk SSSR, 126 (1959). Zbl0088.30402MR118947
- [6] I. Ya. Bakel'man, On the stability of Monge-Ampère equations of elliptic type, Uspehi Mat. Nauk, 15 (1960). Zbl0092.31302MR124606
- [7] I. Ya. Bakel'man, Variational problems connected with Monge-Ampère equation, Dokl. Akad. Nauk SSSR, 141 (1961). Zbl0109.32804
- [8] I. Ya. Bakel'man, Geometric methods of solution of elliptic equations, Izdat. Nauka, Moscow (1965). MR194727
- [9] I. Ya. Bakel'man, Geometric questions on quasilinear elliptic equations, Uspehi Mat. Nauk, 25 (1970). Zbl0217.41401MR340814
- [10] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J., 5 (1958). Zbl0113.30104MR106487
- [11] S.Y. Cheng - S.T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 29 (1976). Zbl0363.53030MR423267
- [12] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampère equation det (... ) = F(x, u), Comm. Pure Appl. Math., 30 (1977). Zbl0347.35019MR437805
- [13] H. Flanders, On certain functions with positive definite hessian, Ann. of Math., 71 (1960). Zbl0093.29003MR145025
- [14] P.P. Gillis, Equations de Monge-Ampère et problèmes de calcul de variations . III Congrès National des Sciences, Bruxelles (1950).
- [15] P.P. Gillis, Équations de Monge-Ampère à 4 variables, Acad. Roy. Bel. Bull. Cl. Sci., (5) 36 (1950). Zbl0040.34502MR38536
- [16] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Herman, Paris (1896). Zbl27.0264.04JFM27.0264.04
- [17] E. Goursat, Cours d'analyse mathématique, Gauthier-Villars, Paris, (1956).
- [18] E. Heinz, Über gewisse elliptische Systeme von Differentialgleichungen zweiter Ordnung mit Anwendung auf die Monge-Ampère'sche Gleichung, Math. Ann., 131 (1956). Zbl0072.31103MR123809
- [19] E. Heinz, On elliptic Monge-Ampère equations and Weyl's embedding problem, Journal d'Analyse, 7 (1959-60). Zbl0152.30901MR111943
- [20] E. Heinz, Interior estimates for solutions of elliptic Monge-Ampère equations, Proc. Symposia Pure Math.4, A.M.S. (1961). Zbl0192.20001MR157100
- [21] A.V. Ivanov, A priori estimates for solutions of nonlinear elliptic second order equations, Problems of Math. Phys. and questions from the theory of functions, O. A. Layzhenskaja ed., Izdat. Nauka, Leningrad (1976).
- [22] K. Jörgens, Über die Lösungen der Differentialgleichung rt - S2 = 1, Math. Ann., 127 (1954). MR62326
- [23] K. Jörgens, Harmonische Abbildungen und die Differentialgleichung rt — s2 = 1Math. Ann., 129 (1955). Zbl0064.35203MR73823
- [24] H. Lewy, A priori limitations for solutions of Monge-Ampère equations, I and I I, Trans. Amer. Math. Soc., 37 (1935), and 41 (1937). Zbl61.0513.02MR1501906JFM61.0513.02
- [25] H. Lewy, On differential geometry in the large (Minkowki's problem), Trans. Amer. Math. Soc., 43 (1938). Zbl0018.17403JFM64.0714.03
- [26] H. Lewy, On the existence of a closed surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci. USA24, No. 2 (1938). Zbl0018.08803JFM64.0715.02
- [27] G. Monge, Sur le calcul intégral des équations aux differences partielles, Mémoires de l'Académie des Sciences, Paris (1784).
- [28] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953). Zbl0051.12402MR58265
- [29] L. Nirenberg, Monge-Ampère equations and some associated problems in geometry, Proc. International Congress of Math., Vancouver (1974). Zbl0335.35045MR442291
- [30] A.V. Pogorelov, The regularity of a convex surface with a given Gauss curvature, Russian Math. Sbornik NS, 31 (1952). MR52807
- [31] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Noordhoff, Groningen (1964). Zbl0133.04902MR180763
- [32] A.V. Pogorelov, On a regular solution of the n-dimensional Minkowski problem, Dokl. Akad. Nauk SSSR, 199 (1971). Zbl0236.53057
- [33] A.V. Pogorelov, On the regularity of generalized solutions of the equation det (...) = ϕ( ... ) > 0, Dokl. Akad. Nauk SSSR, 200 (1971).
- [34] A.V. Pogorelov, The Dirichlet problem for the multidimensional analogue-of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR, 201 (1971). Zbl0238.35071MR293228
- [35] A.V. Pogorelov, Extrinsic geometry of convex surfaces, Amer. Math. Soc., Providence (1973). Zbl0311.53067MR346714
- [36] A.V. Pogorelov, The Minkowski multidimensional problem, Winston and Sons, Halsted Press (1978). Zbl0387.53023MR478079
- [37] I.V. Skrypnik - A.E. Shishkov, On sotution of the Dirichlet problem for Monge-Ampère equations, Dokl. Akad. Nauk Ukrain. SSR, ser. A, No. 3 (1978).
- [38] A.E. Shishkov, Existence of solutions that are regular up to the boundary of the domain of the Dirichlet problem for strongly elliptic Monge-Ampère equations, Dokl. Akad. Nauk Ukrain. SSR, ser. A, No. 1 (1978). Zbl0377.35024MR470474
- [39] W. Von Wahl, Über die Hölderstetigkeit der zweiten Ableitungen der Lösungen nichtlinearer elliptischer Gleichungen, Math. Z., 136 (1974). Zbl0283.35040MR346324
- [40] A.D. Aleksandrov, The method of normal maps in uniqueness problems and estimations for elliptic equations, Sem. Ist. Naz. Alta Mat. (1962/63), editrice Oderisi, Gubbio (1965). MR214900
- [41] A. Alvino - G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri, Ricerche Mat., 27 (1978). Zbl0403.35027MR527431
- [42] A. Alvino - G. Trombetti, Equazioni ellittiche con termini di ordine inferiore e riordinamenti, Rend. Acc. Naz. Lincei, ser. III, vol. 66 (1979). Zbl0455.35052
- [43] L. Bianchi, Lezioni di geometria differenziale, vol. 1, parte 1, Bologna, editore Zanichelli (1927). Zbl53.0659.03JFM53.0659.03
- [44] T. Bonnesen - W. Fenchel, Theorie der Konvexen Korper, Chelsea, New York (1948). Zbl0906.52001
- [45] G. Chiti, Norme di Orlicz delle soluzioni di una classe di equazioni ellittiche, Boll. Un. Mat. Ital., (5) 16A (1979). Zbl0398.35028
- [46] M. D, Differential geometry of curves and surfaces, Prentice Hall (1976). Zbl0326.53001MR394451
- [47] N.V. Efimov, Flachenverbiegung im grossen, Akademie Verlag, Berlin (1957). Zbl0077.15403MR85569
- [48] H.G. Eggleston, Convexity, Cambridge Univ. Press (1958). Zbl0086.15302
- [49] H. Federer: Curvature measnres, Trans. Amer. Math. Soc., 93 (1959). Zbl0089.38402
- [50] M.L. Gerver, Metric properties of harmonic functions, Dokl. Akad. Nauk SSSR, 166 (1966). Zbl0149.07802
- [51] H.J. Greenberg - W.P. Pierskalla, A review of quasi-convex functions, Operations Research, 19 (1971). Zbl0228.26012
- [52] Hardy - Littlewood - Pòlya, Inequalities, Cambridge Univ. Press (1964). Zbl0010.10703
- [53] D.I. Kristev, A metric property of the solutions of an elliptic equation in the plane, Vestnik Moskov. Univ. Ser. I Mat. Meh., 31 (1976). Zbl0337.35024
- [54] D. Laugwitz, Differential and Riemannian geometry, Academic Press (1965). Zbl0139.38903
- [55] M. Longinetti, Funzioni quasi convesse, Tesi di laurea, Università di Firenze-(1979).
- [56a] W.A. Luxemburg - A.C. Zaanen, Notes on Banach function spaces I... XIII, Indag. Math., 25 (1963); 26 (1964). Zbl0117.08002
- [56b] W.A. Luxemburg, Notes on Banach function spaces XIV ... XVI, Indag. Math., 27 (1965).
- [57] C. Maderna - S. Salsa, Symmetrization in Neuman problems, Applicable Analysis, 9 (1979). Zbl0422.35027
- [58] L. Nirenberg, Elementary remarks on surfaces with curvature of fixed sign, Proc. Symposia Pure Math., vol. 3, A.M.S. (1961). Zbl0105.14903
- [59] G.O. Okikiolu, Aspects of the theory of bounded integral operators in Lp spaces, Academic Press (1971). Zbl0219.44002
- [60] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and L(p, q) spaces, J. Analyse Math., 21 (1968). Zbl0182.16703
- [61] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc., 84 (1978). Zbl0411.52006
- [62] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl., 74 (1966). Zbl0144.35801MR214905
- [63] G. Talenti, Sugli invarianti della matrice hessiana, Boll. Un. Mat. Ital., 20 (1965). Zbl0178.36003MR202743
- [64] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa, (4) 3 (1976). Zbl0341.35031MR601601
- [65] G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., 120 (1979). Zbl0419.35041MR551065
Citations in EuDML Documents
top- Barbara Brandolini, Equazioni tipo Monge-Ampère: risultati di confronto
- Jean Dolbeault, Régis Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems
- C. Trombetti, On a class of Monge-Ampère type equations with lower order terms
- B. Brandolini, C. Nitsch, C. Trombetti, New isoperimetric estimates for solutions to Monge-Ampère equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.