On asymptotic stability in energy space of ground states of NLS in 2D
Scipio Cuccagna; Mirko Tarulli
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1361-1386
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCuccagna, Scipio, and Tarulli, Mirko. "On asymptotic stability in energy space of ground states of NLS in 2D." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1361-1386. <http://eudml.org/doc/78894>.
@article{Cuccagna2009,
author = {Cuccagna, Scipio, Tarulli, Mirko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equation; asymptotic stability; ground states of NLS; wave operators; Fourier integral operators; Fermi golden rule (FGR); Strichartz estimates; smoothing estimates},
language = {eng},
number = {4},
pages = {1361-1386},
publisher = {Elsevier},
title = {On asymptotic stability in energy space of ground states of NLS in 2D},
url = {http://eudml.org/doc/78894},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Cuccagna, Scipio
AU - Tarulli, Mirko
TI - On asymptotic stability in energy space of ground states of NLS in 2D
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1361
EP - 1386
LA - eng
KW - nonlinear Schrödinger equation; asymptotic stability; ground states of NLS; wave operators; Fourier integral operators; Fermi golden rule (FGR); Strichartz estimates; smoothing estimates
UR - http://eudml.org/doc/78894
ER -
References
top- [1] Agmon S., Spectral properties of Schrodinger operators and scattering theory, Ann. Sc. Norm. Pisa2 (1975) 151-218. Zbl0315.47007MR397194
- [2] Burq N., Global Strichartz estimates for nontrapping geometries: about an article by H. Smith and C. Sogge, Comm. Partial Differential Equations28 (2003) 1675-1683. Zbl1026.35020MR2001179
- [3] Buslaev V.S., Perelman G.S., Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersburg Math. J.4 (1993) 1111-1142. Zbl0853.35112MR1199635
- [4] Buslaev V.S., Perelman G.S., On the stability of solitary waves for nonlinear Schrödinger equations, in: Uraltseva N.N. (Ed.), Nonlinear Evolution Equations, Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98. Zbl0841.35108MR1334139
- [5] Buslaev V.S., Sulem C., On the asymptotic stability of solitary waves of Nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire20 (2003) 419-475. Zbl1028.35139MR1972870
- [6] Christ M., Kieslev A., Maximal functions associated with filtrations, J. Funct. Anal.179 (2001) 409-425. Zbl0974.47025MR1809116
- [7] Cuccagna S., A revision of “On asymptotic stability in energy space of ground states of NLS in 1D”, http://arxiv.org/abs/0711.4192. MR2422523
- [8] Cuccagna S., Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math.54 (2001) 1110-1145. Zbl1031.35129MR1835384
- [9] Cuccagna S., On asymptotic stability of ground states of NLS, Rev. Math. Phys.15 (2003) 877-903. Zbl1084.35089MR2027616
- [10] Cuccagna S., Mizumachi T., On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys.284 (2008) 51-77. Zbl1155.35092MR2443298
- [11] Cuccagna S., Pelinovsky D., Vougalter V., Spectra of positive and negative energies in the linearization of the NLS problem, Comm. Pure Appl. Math.58 (2005) 1-29. Zbl1064.35181MR2094265
- [12] Gang Z., Sigal I.M., Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. Math.216 (2007) 443-490. Zbl1126.35065MR2351368
- [13] Grillakis M., Shatah J., Strauss W., Stability of solitary waves in the presence of symmetries, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [14] Grillakis M., Shatah J., Strauss W., Stability of solitary waves in the presence of symmetries, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
- [15] Gustafson S., Nakanishi K., Tsai T.P., Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Notices66 (2004) 3559-3584. Zbl1072.35167MR2101699
- [16] Jensen A., Kato T., Spectral properties of Schrödinger operators and time decay of the wave functions, Duke Math. J.46 (1979) 583-611. Zbl0448.35080MR544248
- [17] Jensen A., Nenciu G., A unified approach to resolvent expansions at thresholds, Rev. Math. Phys.13 (2001) 717-754. Zbl1029.81067MR1841744
- [18] Jensen A., Yajima K., A remark on boundedness of wave operators for two-dimensional Schrödinger operators, Comm. Math. Phys.225 (2002) 633-637. Zbl1057.47011MR1888876
- [19] Kato T., Wave operators and similarity for some non-selfadjoint operators, Math. Ann.162 (1966) 258-269. Zbl0139.31203MR190801
- [20] Kirr E., Zarnescu A., On the asymptotic stability of bound states in 2D cubic Scrödinger equation, Comm. Math. Phys.272 (2007) 443-468. Zbl1194.35416MR2300249
- [21] Mizumachi T., Asymptotic stability of small solitons to 1D NLS with potential, http://arxiv.org/abs/math.AP/0605031.
- [22] Mizumachi T., Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ.47 (2007) 599-620. Zbl1146.35085MR2402517
- [23] Perelman G.S., On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré2 (2001) 605-673. Zbl1007.35087MR1852922
- [24] Pillet C.A., Wayne C.E., Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations, J. Diff. Eq.141 (1997) 310-326. Zbl0890.35016MR1488355
- [25] Reed M., Simon B., Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1978. Zbl0242.46001MR751959
- [26] Schlag W., Dispersive estimates for Schrödinger operators in dimension two, Comm. Math. Phys.257 (2005) 87-117. Zbl1134.35321MR2163570
- [27] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
- [28] Smith H.F., Sogge C.D., Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations25 (2000) 2171-2183. Zbl0972.35014MR1789924
- [29] Soffer A., Weinstein M., Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys.133 (1990) 116-146. Zbl0721.35082MR1071238
- [30] Soffer A., Weinstein M., Multichannel nonlinear scattering II. The case of anisotropic potentials and data, J. Differential Equations98 (1992) 376-390. Zbl0795.35073MR1170476
- [31] Soffer A., Weinstein M., Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys.16 (2004) 977-1071. Zbl1111.81313MR2101776
- [32] Taylor M.E., Partial Differential Equations II, Appl. Math. Sci., vol. 116, Springer, 1997. MR1395149
- [33] Tsai T.P., Yau H.T., Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions, Comm. Pure Appl. Math.55 (2002) 153-216. Zbl1031.35137MR1865414
- [34] Tsai T.P., Yau H.T., Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Notices31 (2002) 1629-1673. Zbl1011.35120MR1916427
- [35] Tsai T.P., Yau H.T., Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys.6 (2002) 107-139. Zbl1033.81034MR1992875
- [36] Weder R., Center manifold for nonintegrable nonlinear Schrödinger equations on the line, Comm. Math. Phys.170 (2000) 343-356. Zbl1003.37045MR1799850
- [37] Weinstein M., Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974
- [38] Weinstein M., Lyapunov stability of ground states of nonlinear dispersive equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
- [39] Yajima K., The continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan47 (1995) 551-581. Zbl0837.35039MR1331331
- [40] Yajima K., The boundedness of wave operators for two dimensional Schrödinger operators, Comm. Math. Phys.208 (1999) 125-152. Zbl0961.47004MR1729881
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.