On asymptotic stability of solitary waves for nonlinear Schrödinger equations
Vladimir S. Buslaev; Catherine Sulem
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 3, page 419-475
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBuslaev, Vladimir S., and Sulem, Catherine. "On asymptotic stability of solitary waves for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 419-475. <http://eudml.org/doc/78586>.
@article{Buslaev2003,
author = {Buslaev, Vladimir S., Sulem, Catherine},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; solitary waves; asymptotic stability},
language = {eng},
number = {3},
pages = {419-475},
publisher = {Elsevier},
title = {On asymptotic stability of solitary waves for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78586},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Buslaev, Vladimir S.
AU - Sulem, Catherine
TI - On asymptotic stability of solitary waves for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 419
EP - 475
LA - eng
KW - nonlinear Schrödinger equations; solitary waves; asymptotic stability
UR - http://eudml.org/doc/78586
ER -
References
top- [1] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
- [2] Buslaev V., Perelman G., Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersburg Math. J.4 (1993) 1111-1142. Zbl0853.35112MR1199635
- [3] Buslaev V., Perelman G., On the stability of solitary waves for nonlinear Schrödinger equations, Amer. Math. Soc. Transl.164 (1995) 75-98. Zbl0841.35108MR1334139
- [4] Cuccagna S., Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math.LIV (2001) 1110-1145. Zbl1031.35129MR1835384
- [5] P. Deift, X. Zhou, Perturbation theory for infinite dimensional integrable systems on the line, Preprint. Zbl1006.35089
- [6] Ginibre J., Velo G., On a class of Schrödinger equations. I: The Cauchy problem, General case; II: Scattering theory, General case, J. Funct. Anal.32 (1979) 1-32, 33–71. Zbl0396.35028MR533219
- [7] Grikurov V.E., Perturbation of unstable solitons for generalized NLS with saturating nonlinearity, in: Intern. Seminar ‘Day on Diffraction-97’, 1997, pp. 170-179.
- [8] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, Part I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [9] McKean H., Shatah J., The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form, Comm. Pure Appl. Math.44 (1991) 1067-1083. Zbl0773.35075MR1127050
- [10] Perelman G., On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré2 (2001) 605-673. Zbl1007.35087MR1852922
- [11] Pelinovsky D., Kivshar Yu., Afanasjev V.V., Internal modes of envelope solitons, Phys. D116 (1998) 121-142. Zbl0934.35175MR1621908
- [12] Soffer A., Weinstein M., Multichannel nonlinear scattering for non-integrable equations, Comm. Math. Phys.133 (1990) 119-146. Zbl0721.35082MR1071238
- [13] Soffer A., Weinstein M., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math.136 (1999) 9-74. Zbl0910.35107MR1681113
- [14] Strauss W., Nonlinear scattering theory at low energy, J. Funct. Anal.41 (1981) 110-133, J. Funct. Anal.43 (1981) 281-293. Zbl0466.47006MR614228
- [15] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, in: Applied Mathematical Sciences, Vol. 139, Springer. Zbl0928.35157MR1696311
- [16] Weinstein M., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
- [17] Yau H.-T., Tsai T.-P., Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions, Comm. Pure Appl. Math.LV (2002) 1-64. Zbl1031.35137MR1865414
Citations in EuDML Documents
top- G. Berkolaiko, A. Comech, On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D
- V. Vougalter, On Threshold Eigenvalues and Resonances for the Linearized NLS Equation
- Alexander Komech, Andrew Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction
- Scipio Cuccagna, Mirko Tarulli, On asymptotic stability in energy space of ground states of NLS in 2D
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.