Peano type theorem for abstract parabolic equations
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1407-1421
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZubelevich, Oleg. "Peano type theorem for abstract parabolic equations." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1407-1421. <http://eudml.org/doc/78896>.
@article{Zubelevich2009,
author = {Zubelevich, Oleg},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Peano theorem; abstract Cauchy problem; nonlocal problems; functional-differential equations; integro-differential equations; quasilinear parabolic equations},
language = {eng},
number = {4},
pages = {1407-1421},
publisher = {Elsevier},
title = {Peano type theorem for abstract parabolic equations},
url = {http://eudml.org/doc/78896},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Zubelevich, Oleg
TI - Peano type theorem for abstract parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1407
EP - 1421
LA - eng
KW - Peano theorem; abstract Cauchy problem; nonlocal problems; functional-differential equations; integro-differential equations; quasilinear parabolic equations
UR - http://eudml.org/doc/78896
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] Amann H., On abstract parabolic fundamental solutions, J. Math. Soc. Japan39 (1987) 93-116. Zbl0616.47032MR867989
- [3] Amann H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Schmeisser H., Triebel H. (Eds.), Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Texte zur Mathematik, vol. 133, Teubner, 1993, pp. 9-126, MR 94m:35153. Zbl0810.35037MR1242579
- [4] Amann H., Linear and Quasilinear Parabolic Problems. Abstract Linear Theory, Birkhäuser Verlag, 1995. Zbl0819.35001MR1345385
- [5] Arrieta J.M., Carvalho A.N., Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and Heat equations, Trans. Amer. Math. Soc.352 (1) (2000) 285-310. Zbl0940.35119MR1694278
- [6] Browder F.E., A new generalization of the Schauder fixed point theorem, Math. Ann.174 (1967) 285-290. Zbl0176.45203MR223944
- [7] A.N. Carvalho, Abstract parabolic problems in ordered Banach spaces, Cadernos de Mathematica 02, 141–146, March 2001, Artigo Numero SMA No. 104.
- [8] Diedonné J., Deux exeples singuliers d'équations différentielles, Acta Sci. Math. (Szeged)12 (1950) B 38-40. Zbl0037.06002MR35397
- [9] Dunford N., Schwartz J.T., Linear Operators. Part 1: General Theory, Interscience Publishers, New York, London, 1958. Zbl0084.10402MR117523
- [10] Dunford N., Schwartz J.T., Linear Operators. Part 3: Spectral Operators, Wiley-Interscience, New York, London, 1971. Zbl0243.47001
- [11] Folland G., Real Analysis: Modern Techniques and Their Applications, second ed., Wiley-Interscience, 1999. Zbl0924.28001MR1681462
- [12] Frisch U., Turbulence. The Legacy of A.N. Kolmogorov, Cambridge University Press, 1995. Zbl0832.76001MR1428905
- [13] Fujita H., Kato T., On the Navier–Stokes initial value problem I., Arch. Ration. Mech. Anal.16 (1964) 269-315, MR 29:3774. Zbl0126.42301MR166499
- [14] Godunov A., Peano's theorem in Banach spaces, Funct. Anal. Appl.9 (1975) 53-55. Zbl0314.34059MR364797
- [15] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981, MR 83j:35084. Zbl0456.35001MR610244
- [16] Kato T., Fujita H., On the nonstationary Navier–Stokes system, Rend. Sem. Math. Univ. Padova32 (1962) 243-260, MR 26:495. Zbl0114.05002MR142928
- [17] Schwartz L., Analyse Mathématique, Hermann, 1967. Zbl0171.01301
- [18] Yorke J., A continuous differential equation in Hilbert space without existence, Funkcial. Ekvac.13 (1970) 19-21. Zbl0248.34061MR264196
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.