Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
Teresa D'Aprile; Angela Pistoia
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1423-1451
- ISSN: 0294-1449
Access Full Article
topHow to cite
topD'Aprile, Teresa, and Pistoia, Angela. "Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1423-1451. <http://eudml.org/doc/78897>.
@article{DAprile2009,
author = {D'Aprile, Teresa, Pistoia, Angela},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger equation; clusters; finite-dimensional reduction; max-min argument},
language = {eng},
number = {4},
pages = {1423-1451},
publisher = {Elsevier},
title = {Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation},
url = {http://eudml.org/doc/78897},
volume = {26},
year = {2009},
}
TY - JOUR
AU - D'Aprile, Teresa
AU - Pistoia, Angela
TI - Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1423
EP - 1451
LA - eng
KW - Schrödinger equation; clusters; finite-dimensional reduction; max-min argument
UR - http://eudml.org/doc/78897
ER -
References
top- [1] Alves C.O., Soares S.H.M., On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl.296 (2004) 563-577. Zbl1051.35081MR2075185
- [2] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal.140 (1997) 285-300. Zbl0896.35042MR1486895
- [3] Ambrosetti A., Malchiodi A., Perturbation Methods and Semilinear Elliptic Problem on , Progr. Math., vol. 240, Birkhäuser, 2005. Zbl1115.35004
- [4] Ambrosetti A., Malchiodi A., Secchi S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal.159 (3) (2001) 253-271. Zbl1040.35107MR1857674
- [5] Bartsch T., Clapp M., Weth T., Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann.338 (2007) 147-185. Zbl1126.35061MR2295508
- [6] Bartsch T., Weth T., The effect of the domain's configuration space on the number of nodal solutions of singularly perturbed elliptic equations, Topol. Methods Nonlinear Anal.26 (2005) 109-133. Zbl1152.35039MR2179353
- [7] Bartsch T., Weth T., Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 259-281. Zbl1114.35068MR2136244
- [8] Cao D., Dancer E.N., Noussair E., Yan S., On the existence profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems2 (1996) 221-236. Zbl0947.35073MR1382508
- [9] Cerami G., Clapp M., Sign changing solutions of semilinear elliptic problems in exterior domains, Calc. Var. Partial Differential Equations30 (2007) 353-367. Zbl1174.35026MR2332418
- [10] Cerami G., Devillanova G., Solimini S., Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differential Equations23 (2005) 139-168. Zbl1078.35113MR2138080
- [11] Dancer E.N., A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc.61 (2000) 305-312. Zbl0945.35031MR1748710
- [12] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.189 (1999) 241-262. Zbl0933.35070MR1696122
- [13] Dancer E.N., Wei J., On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations157 (1999) 82-101. Zbl1087.35507MR1710015
- [14] D'Aprile T., Pistoia A., On the number of sign-changing solutions of a semiclassical nonlinear Schrödinger equation, Adv. Differential Equations12 (2007) 737-758. Zbl1207.35040MR2331522
- [15] Del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations4 (1996) 121-137. Zbl0844.35032MR1379196
- [16] Del Pino M., Felmer P., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 127-149. Zbl0901.35023MR1614646
- [17] Del Pino M., Felmer P., Tanaka K., An elementary construction of complex patterns in nonlinear Schrödinger equations, Nonlinearity15 (2002) 1653-1671. Zbl1022.34037MR1925432
- [18] Del Pino M., Felmer P., Wei J., Multi-peak solutions for some singular perturbation problems, Calc. Var. Partial Differential Equations10 (2000) 119-134. Zbl0974.35041MR1750734
- [19] Del Pino M., Felmer P., Wei J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal.31 (1999) 63-79. Zbl0942.35058MR1742305
- [20] Floer A., Weinstein A., Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (1986) 397-408. Zbl0613.35076MR867665
- [21] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. Suppl Stud. A7 (1981) 369-402. Zbl0469.35052MR634248
- [22] Grossi M., Pistoia A., On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations5 (2000) 1397-1420. Zbl0989.35054MR1785679
- [23] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations11 (2000) 143-175. Zbl0964.35047MR1782991
- [24] Gui C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
- [25] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
- [26] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
- [27] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 47-82. Zbl0944.35020MR1743431
- [28] Kang X., Wei J., On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations5 (2000) 899-928. Zbl1217.35065MR1776345
- [29] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Differential Equations2 (1997) 955-980. Zbl1023.35500MR1606351
- [30] Li Y.Y., On a singularly perturbed equation with Neumann boundary conditions, Comm. Partial Differential Equations23 (1998) 487-545. Zbl0898.35004MR1620632
- [31] Micheletti A.M., Pistoia A., On the multiplicity of nodal solutions to a singularly perturbed Neumann problem, Mediterranean J. Math.5 (2008) 285-294. Zbl1207.35037MR2465576
- [32] Li Y.Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
- [33] Ni W.M., Takagi I., On the shape of least-energy solutions to a semi-linear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
- [34] Ni W.M., Takagi I., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J.94 (1998) 597-618. Zbl0946.35007MR1639546
- [35] Ni W.M., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math.48 (1995) 731-768. Zbl0838.35009MR1342381
- [36] Noussair E., Wei J., On the effect of domain geometry on the existence and profile of nodal solutions of some singularly perturbed semilinear Dirichlet problem, Indiana Univ. Math. J.46 (1997) 1255-1272. Zbl0907.35011MR1631584
- [37] Noussair E., Wei J., On the existence and profile of nodal solutions of some singularly perturbed semilinear Neumann problem, Comm. Partial Differential Equations23 (1998) 793-816. Zbl0914.35012MR1632748
- [38] Oh Y.-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys.131 (1990) 223-253. Zbl0753.35097MR1065671
- [39] Wang X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys.153 (1993) 229-244. Zbl0795.35118MR1218300
- [40] Wei J., On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
- [41] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (1996) 315-333. Zbl0865.35011MR1404386
- [42] Wei J., Weth T., On the number of nodal solutions to a singularly perturbed Neumann problem, Manuscripta Math.117 (2005) 333-344. Zbl1205.35031MR2154254
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.