Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation

Teresa D'Aprile; Angela Pistoia

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1423-1451
  • ISSN: 0294-1449

How to cite

top

D'Aprile, Teresa, and Pistoia, Angela. "Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1423-1451. <http://eudml.org/doc/78897>.

@article{DAprile2009,
author = {D'Aprile, Teresa, Pistoia, Angela},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger equation; clusters; finite-dimensional reduction; max-min argument},
language = {eng},
number = {4},
pages = {1423-1451},
publisher = {Elsevier},
title = {Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation},
url = {http://eudml.org/doc/78897},
volume = {26},
year = {2009},
}

TY - JOUR
AU - D'Aprile, Teresa
AU - Pistoia, Angela
TI - Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1423
EP - 1451
LA - eng
KW - Schrödinger equation; clusters; finite-dimensional reduction; max-min argument
UR - http://eudml.org/doc/78897
ER -

References

top
  1. [1] Alves C.O., Soares S.H.M., On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl.296 (2004) 563-577. Zbl1051.35081MR2075185
  2. [2] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal.140 (1997) 285-300. Zbl0896.35042MR1486895
  3. [3] Ambrosetti A., Malchiodi A., Perturbation Methods and Semilinear Elliptic Problem on R N , Progr. Math., vol. 240, Birkhäuser, 2005. Zbl1115.35004
  4. [4] Ambrosetti A., Malchiodi A., Secchi S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal.159 (3) (2001) 253-271. Zbl1040.35107MR1857674
  5. [5] Bartsch T., Clapp M., Weth T., Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann.338 (2007) 147-185. Zbl1126.35061MR2295508
  6. [6] Bartsch T., Weth T., The effect of the domain's configuration space on the number of nodal solutions of singularly perturbed elliptic equations, Topol. Methods Nonlinear Anal.26 (2005) 109-133. Zbl1152.35039MR2179353
  7. [7] Bartsch T., Weth T., Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 259-281. Zbl1114.35068MR2136244
  8. [8] Cao D., Dancer E.N., Noussair E., Yan S., On the existence profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems2 (1996) 221-236. Zbl0947.35073MR1382508
  9. [9] Cerami G., Clapp M., Sign changing solutions of semilinear elliptic problems in exterior domains, Calc. Var. Partial Differential Equations30 (2007) 353-367. Zbl1174.35026MR2332418
  10. [10] Cerami G., Devillanova G., Solimini S., Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differential Equations23 (2005) 139-168. Zbl1078.35113MR2138080
  11. [11] Dancer E.N., A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc.61 (2000) 305-312. Zbl0945.35031MR1748710
  12. [12] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.189 (1999) 241-262. Zbl0933.35070MR1696122
  13. [13] Dancer E.N., Wei J., On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations157 (1999) 82-101. Zbl1087.35507MR1710015
  14. [14] D'Aprile T., Pistoia A., On the number of sign-changing solutions of a semiclassical nonlinear Schrödinger equation, Adv. Differential Equations12 (2007) 737-758. Zbl1207.35040MR2331522
  15. [15] Del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations4 (1996) 121-137. Zbl0844.35032MR1379196
  16. [16] Del Pino M., Felmer P., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 127-149. Zbl0901.35023MR1614646
  17. [17] Del Pino M., Felmer P., Tanaka K., An elementary construction of complex patterns in nonlinear Schrödinger equations, Nonlinearity15 (2002) 1653-1671. Zbl1022.34037MR1925432
  18. [18] Del Pino M., Felmer P., Wei J., Multi-peak solutions for some singular perturbation problems, Calc. Var. Partial Differential Equations10 (2000) 119-134. Zbl0974.35041MR1750734
  19. [19] Del Pino M., Felmer P., Wei J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal.31 (1999) 63-79. Zbl0942.35058MR1742305
  20. [20] Floer A., Weinstein A., Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (1986) 397-408. Zbl0613.35076MR867665
  21. [21] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R N , Adv. Math. Suppl Stud. A7 (1981) 369-402. Zbl0469.35052MR634248
  22. [22] Grossi M., Pistoia A., On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations5 (2000) 1397-1420. Zbl0989.35054MR1785679
  23. [23] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations11 (2000) 143-175. Zbl0964.35047MR1782991
  24. [24] Gui C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
  25. [25] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
  26. [26] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
  27. [27] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 47-82. Zbl0944.35020MR1743431
  28. [28] Kang X., Wei J., On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations5 (2000) 899-928. Zbl1217.35065MR1776345
  29. [29] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Differential Equations2 (1997) 955-980. Zbl1023.35500MR1606351
  30. [30] Li Y.Y., On a singularly perturbed equation with Neumann boundary conditions, Comm. Partial Differential Equations23 (1998) 487-545. Zbl0898.35004MR1620632
  31. [31] Micheletti A.M., Pistoia A., On the multiplicity of nodal solutions to a singularly perturbed Neumann problem, Mediterranean J. Math.5 (2008) 285-294. Zbl1207.35037MR2465576
  32. [32] Li Y.Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
  33. [33] Ni W.M., Takagi I., On the shape of least-energy solutions to a semi-linear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
  34. [34] Ni W.M., Takagi I., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J.94 (1998) 597-618. Zbl0946.35007MR1639546
  35. [35] Ni W.M., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math.48 (1995) 731-768. Zbl0838.35009MR1342381
  36. [36] Noussair E., Wei J., On the effect of domain geometry on the existence and profile of nodal solutions of some singularly perturbed semilinear Dirichlet problem, Indiana Univ. Math. J.46 (1997) 1255-1272. Zbl0907.35011MR1631584
  37. [37] Noussair E., Wei J., On the existence and profile of nodal solutions of some singularly perturbed semilinear Neumann problem, Comm. Partial Differential Equations23 (1998) 793-816. Zbl0914.35012MR1632748
  38. [38] Oh Y.-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys.131 (1990) 223-253. Zbl0753.35097MR1065671
  39. [39] Wang X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys.153 (1993) 229-244. Zbl0795.35118MR1218300
  40. [40] Wei J., On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
  41. [41] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (1996) 315-333. Zbl0865.35011MR1404386
  42. [42] Wei J., Weth T., On the number of nodal solutions to a singularly perturbed Neumann problem, Manuscripta Math.117 (2005) 333-344. Zbl1205.35031MR2154254

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.