The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics

V. Jurdjevic

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1483-1515
  • ISSN: 0294-1449

How to cite

top

Jurdjevic, V.. "The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1483-1515. <http://eudml.org/doc/78899>.

@article{Jurdjevic2009,
author = {Jurdjevic, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lie groups; Lie algebras; symmetric spaces; orthonormal frame bundles; Fréchet spaces; symplectic forms; Hamiltonian vector fields},
language = {eng},
number = {4},
pages = {1483-1515},
publisher = {Elsevier},
title = {The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics},
url = {http://eudml.org/doc/78899},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Jurdjevic, V.
TI - The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1483
EP - 1515
LA - eng
KW - Lie groups; Lie algebras; symmetric spaces; orthonormal frame bundles; Fréchet spaces; symplectic forms; Hamiltonian vector fields
UR - http://eudml.org/doc/78899
ER -

References

top
  1. [1] Abraham R., Marsden J., Foundations of Mechanics, Benjamin–Cummings, Reading, MA, 1978. Zbl0393.70001MR515141
  2. [2] Arnold V.I., Khesin B.A., Topological Methods in Hydrodynamics, Appl. Math. Sci., vol. 125, Springer-Verlag, New York, 1998. Zbl0902.76001MR1612569
  3. [3] Brylinski J.P., Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. Math., vol. 108, Birkhäuser, Boston, 1993. Zbl0823.55002MR1197353
  4. [4] Epstein C.L., Weinstein M.I., A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math.XL (1987) 119-139. Zbl0602.34026MR865360
  5. [5] Faddeev L., Takhtajan L., Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980. Zbl1111.37001
  6. [6] Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7 (1972) 65-221. Zbl0499.58003MR656198
  7. [7] Hasimoto H., Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Japan31 (1971) 293-294. 
  8. [8] Hasimoto H., A soliton on a vortex filament, J. Fluid Mech.51 (1972) 477-485. Zbl0237.76010
  9. [9] Ivey T., Singer D.A., Knot types, homotopies and stability of closed elastic curves, Proc. London Math. Soc.79 (3) (1999) 429-450. Zbl1036.53001MR1702249
  10. [10] Jurdjevic V., Hamiltonian systems on complex Lie groups and their homogeneous spaces, Mem. Amer. Math. Soc.178 (838) (2005). Zbl1085.53071MR2173602
  11. [11] Jurdjevic V., Geometric Control Theory, Cambridge Studies in Advanced Mathematics, vol. 51, Cambridge Univ. Press, New York, 1997. Zbl0940.93005MR1425878
  12. [12] Jurdjevic V., Monroy-Perez F., Hamiltonian systems on Lie groups: Elastic curves, tops and constrained geodesic problems, in: Non-Linear Geometric Control Theory and its Applications, World Scientific Publishing Co., Singapore, 2002, pp. 3-52. Zbl1142.49317MR1881484
  13. [13] Jurdjevic V., Hamiltonian systems on Lie groups: Kowalewski type, Ann. Math.150 (1999) 1-40. Zbl0953.37012MR1726703
  14. [14] Langer J., Perline R., Poisson geometry of the filament equation, J. Nonlinear Sci.1 (1978) 71-93. Zbl0795.35115MR1102831
  15. [15] Magri F., A simple model for the integrable Hamiltonian equation, J. Math. Phys.19 (1978) 1156-1162. Zbl0383.35065MR488516
  16. [16] Millson J., Zombro B.A., A Kähler structure on the moduli spaces of isometric maps of a circle into Euclidean spaces, Invent. Math.123 (1) (1996) 35-59. Zbl0859.58007MR1376245
  17. [17] Shabat C., Zakharov V., Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP34 (1972) 62-69. MR406174
  18. [18] Sternberg S., Lectures on Differential Geometry, Prentice-Hall Inc., Englewood-Cliffs, NJ, 1964. Zbl0129.13102MR193578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.