The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1483-1515
- ISSN: 0294-1449
Access Full Article
topHow to cite
topJurdjevic, V.. "The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1483-1515. <http://eudml.org/doc/78899>.
@article{Jurdjevic2009,
author = {Jurdjevic, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lie groups; Lie algebras; symmetric spaces; orthonormal frame bundles; Fréchet spaces; symplectic forms; Hamiltonian vector fields},
language = {eng},
number = {4},
pages = {1483-1515},
publisher = {Elsevier},
title = {The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics},
url = {http://eudml.org/doc/78899},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Jurdjevic, V.
TI - The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1483
EP - 1515
LA - eng
KW - Lie groups; Lie algebras; symmetric spaces; orthonormal frame bundles; Fréchet spaces; symplectic forms; Hamiltonian vector fields
UR - http://eudml.org/doc/78899
ER -
References
top- [1] Abraham R., Marsden J., Foundations of Mechanics, Benjamin–Cummings, Reading, MA, 1978. Zbl0393.70001MR515141
- [2] Arnold V.I., Khesin B.A., Topological Methods in Hydrodynamics, Appl. Math. Sci., vol. 125, Springer-Verlag, New York, 1998. Zbl0902.76001MR1612569
- [3] Brylinski J.P., Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. Math., vol. 108, Birkhäuser, Boston, 1993. Zbl0823.55002MR1197353
- [4] Epstein C.L., Weinstein M.I., A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math.XL (1987) 119-139. Zbl0602.34026MR865360
- [5] Faddeev L., Takhtajan L., Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980. Zbl1111.37001
- [6] Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7 (1972) 65-221. Zbl0499.58003MR656198
- [7] Hasimoto H., Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Japan31 (1971) 293-294.
- [8] Hasimoto H., A soliton on a vortex filament, J. Fluid Mech.51 (1972) 477-485. Zbl0237.76010
- [9] Ivey T., Singer D.A., Knot types, homotopies and stability of closed elastic curves, Proc. London Math. Soc.79 (3) (1999) 429-450. Zbl1036.53001MR1702249
- [10] Jurdjevic V., Hamiltonian systems on complex Lie groups and their homogeneous spaces, Mem. Amer. Math. Soc.178 (838) (2005). Zbl1085.53071MR2173602
- [11] Jurdjevic V., Geometric Control Theory, Cambridge Studies in Advanced Mathematics, vol. 51, Cambridge Univ. Press, New York, 1997. Zbl0940.93005MR1425878
- [12] Jurdjevic V., Monroy-Perez F., Hamiltonian systems on Lie groups: Elastic curves, tops and constrained geodesic problems, in: Non-Linear Geometric Control Theory and its Applications, World Scientific Publishing Co., Singapore, 2002, pp. 3-52. Zbl1142.49317MR1881484
- [13] Jurdjevic V., Hamiltonian systems on Lie groups: Kowalewski type, Ann. Math.150 (1999) 1-40. Zbl0953.37012MR1726703
- [14] Langer J., Perline R., Poisson geometry of the filament equation, J. Nonlinear Sci.1 (1978) 71-93. Zbl0795.35115MR1102831
- [15] Magri F., A simple model for the integrable Hamiltonian equation, J. Math. Phys.19 (1978) 1156-1162. Zbl0383.35065MR488516
- [16] Millson J., Zombro B.A., A Kähler structure on the moduli spaces of isometric maps of a circle into Euclidean spaces, Invent. Math.123 (1) (1996) 35-59. Zbl0859.58007MR1376245
- [17] Shabat C., Zakharov V., Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP34 (1972) 62-69. MR406174
- [18] Sternberg S., Lectures on Differential Geometry, Prentice-Hall Inc., Englewood-Cliffs, NJ, 1964. Zbl0129.13102MR193578
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.