Stability of multipeakons
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1517-1532
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEl Dika, Khaled, and Molinet, Luc. "Stability of multipeakons." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1517-1532. <http://eudml.org/doc/78900>.
@article{ElDika2009,
author = {El Dika, Khaled, Molinet, Luc},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Camassa-Holm equation; multipeakons; orbital stability},
language = {eng},
number = {4},
pages = {1517-1532},
publisher = {Elsevier},
title = {Stability of multipeakons},
url = {http://eudml.org/doc/78900},
volume = {26},
year = {2009},
}
TY - JOUR
AU - El Dika, Khaled
AU - Molinet, Luc
TI - Stability of multipeakons
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1517
EP - 1532
LA - eng
KW - Camassa-Holm equation; multipeakons; orbital stability
UR - http://eudml.org/doc/78900
ER -
References
top- [1] Beals R., Sattinger D.H., Szmigielski J., Multipeakons and the classical moment problem, Adv. Math.154 (2) (2000) 229-257. Zbl0968.35008MR1784675
- [2] Benjamin T.B., The stability of solitary waves, Proc. R. Soc. Lond. Ser. A328 (1972) 153-183. MR338584
- [3] Bressan A., Constantin A., Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal.187 (2007) 215-239. Zbl1105.76013MR2278406
- [4] Bressan A., Constantin A., Global dissipative solutions of the Camassa–Holm equation, J. Anal. Appl.5 (2007) 1-27. Zbl1139.35378MR2288533
- [5] Camassa R., Holm D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (1993) 1661-1664. Zbl0972.35521MR1234453
- [6] Camassa R., Holm D., Hyman J., An new integrable shallow water equation, Adv. Appl. Mech.31 (1994). Zbl0808.76011
- [7] Constantin A., On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. Ser. A457 (2001) 953-970. Zbl0999.35065MR1875310
- [8] Constantin A., The trajectories of particles in Stolkes waves, Invent. Math.166 (2006) 523-535. Zbl1108.76013MR2257390
- [9] Constantin A., Escher J., Particle trajectories in solitary waves, Bull. Amer. Math. Soc. (N.S.)44 (2007) 423-431. Zbl1126.76012MR2318158
- [10] Constantin A., Gerdjikov V., Ivanov R., Inverse scattering transform for the Camassa–Holm equation, Inverse Problems22 (2006) 2197-2207. Zbl1105.37044MR2277537
- [11] Constantin A., Strauss W., Stability of peakons, Comm. Pure Appl. Math.53 (2000) 603-610. Zbl1049.35149MR1737505
- [12] Constantin A., Strauss W., Stability of the Camassa–Holm solitons, J. Nonlinear Sci.12 (2002) 415-422. Zbl1022.35053MR1915943
- [13] Constantin A., Molinet L., Global weak solutions for a shallow water equation, Comm. Math. Phys.211 (2000) 45-61. Zbl1002.35101MR1757005
- [14] Constantin A., Molinet L., Orbital stability of solitary waves for a shallow water equation, Phys. D157 (2001) 75-89. Zbl0984.35139MR1854962
- [15] Dai H.-H., Model equations for nonlinear dispersive waves in compressible Mooney–Rivlin rod, Acta Mech. Sin.127 (1998) 293-308. Zbl0910.73036MR1606738
- [16] Danchin R., A few remarks on the Camassa–Holm equation, Differential Integral Equations14 (2001) 953-980. Zbl1161.35329MR1827098
- [17] El Dika K., Smoothing effect of the generalized BBM equation for localized solutions moving to the right, Discrete Contin. Dyn. Syst.12 (2005) 973-982. Zbl1211.35045MR2128737
- [18] El Dika K., Martel Y., Stability of N solitary waves for the generalized BBM equations, Dyn. Partial Differ. Equ.1 (2004) 401-437. Zbl1080.35116MR2127579
- [19] El Dika K., Molinet L., Exponential decay of -localized solutions and stability of the train ofN solitary waves for the Camassa–Holm equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.365 (2007) 2313-2331. Zbl1152.35470MR2329151
- [20] Fokas A.S., Fuchssteiner B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D4 (1981) 47-66. Zbl1194.37114MR636470
- [21] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [22] Holden H., Raynaud X., A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, Discrete Contin. Dyn. Syst.14 (3) (2006) 505-523. Zbl1111.35061MR2171724
- [23] Johnson R.S., Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech.455 (2002) 63-82. Zbl1037.76006MR1894796
- [24] Martel Y., Merle F., Tsai T.-p., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys.231 (2002) 347-373. Zbl1017.35098MR1946336
- [25] Martel Y., Merle F., Tsai T.-p., Stability in of the sum ofK solitary waves for some nonlinear Schrödinger equations, Duke Math. J.133 (3) (2006) 405-466. Zbl1099.35134MR2228459
- [26] Molinet L., On well-posedness results for Camassa–Holm equation on the line: A survey, J. Nonlinear Math. Phys.11 (2004) 521-533. Zbl1069.35076MR2097662
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.