Stability of multipeakons

Khaled El Dika; Luc Molinet

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1517-1532
  • ISSN: 0294-1449

How to cite

top

El Dika, Khaled, and Molinet, Luc. "Stability of multipeakons." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1517-1532. <http://eudml.org/doc/78900>.

@article{ElDika2009,
author = {El Dika, Khaled, Molinet, Luc},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Camassa-Holm equation; multipeakons; orbital stability},
language = {eng},
number = {4},
pages = {1517-1532},
publisher = {Elsevier},
title = {Stability of multipeakons},
url = {http://eudml.org/doc/78900},
volume = {26},
year = {2009},
}

TY - JOUR
AU - El Dika, Khaled
AU - Molinet, Luc
TI - Stability of multipeakons
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1517
EP - 1532
LA - eng
KW - Camassa-Holm equation; multipeakons; orbital stability
UR - http://eudml.org/doc/78900
ER -

References

top
  1. [1] Beals R., Sattinger D.H., Szmigielski J., Multipeakons and the classical moment problem, Adv. Math.154 (2) (2000) 229-257. Zbl0968.35008MR1784675
  2. [2] Benjamin T.B., The stability of solitary waves, Proc. R. Soc. Lond. Ser. A328 (1972) 153-183. MR338584
  3. [3] Bressan A., Constantin A., Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal.187 (2007) 215-239. Zbl1105.76013MR2278406
  4. [4] Bressan A., Constantin A., Global dissipative solutions of the Camassa–Holm equation, J. Anal. Appl.5 (2007) 1-27. Zbl1139.35378MR2288533
  5. [5] Camassa R., Holm D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (1993) 1661-1664. Zbl0972.35521MR1234453
  6. [6] Camassa R., Holm D., Hyman J., An new integrable shallow water equation, Adv. Appl. Mech.31 (1994). Zbl0808.76011
  7. [7] Constantin A., On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. Ser. A457 (2001) 953-970. Zbl0999.35065MR1875310
  8. [8] Constantin A., The trajectories of particles in Stolkes waves, Invent. Math.166 (2006) 523-535. Zbl1108.76013MR2257390
  9. [9] Constantin A., Escher J., Particle trajectories in solitary waves, Bull. Amer. Math. Soc. (N.S.)44 (2007) 423-431. Zbl1126.76012MR2318158
  10. [10] Constantin A., Gerdjikov V., Ivanov R., Inverse scattering transform for the Camassa–Holm equation, Inverse Problems22 (2006) 2197-2207. Zbl1105.37044MR2277537
  11. [11] Constantin A., Strauss W., Stability of peakons, Comm. Pure Appl. Math.53 (2000) 603-610. Zbl1049.35149MR1737505
  12. [12] Constantin A., Strauss W., Stability of the Camassa–Holm solitons, J. Nonlinear Sci.12 (2002) 415-422. Zbl1022.35053MR1915943
  13. [13] Constantin A., Molinet L., Global weak solutions for a shallow water equation, Comm. Math. Phys.211 (2000) 45-61. Zbl1002.35101MR1757005
  14. [14] Constantin A., Molinet L., Orbital stability of solitary waves for a shallow water equation, Phys. D157 (2001) 75-89. Zbl0984.35139MR1854962
  15. [15] Dai H.-H., Model equations for nonlinear dispersive waves in compressible Mooney–Rivlin rod, Acta Mech. Sin.127 (1998) 293-308. Zbl0910.73036MR1606738
  16. [16] Danchin R., A few remarks on the Camassa–Holm equation, Differential Integral Equations14 (2001) 953-980. Zbl1161.35329MR1827098
  17. [17] El Dika K., Smoothing effect of the generalized BBM equation for localized solutions moving to the right, Discrete Contin. Dyn. Syst.12 (2005) 973-982. Zbl1211.35045MR2128737
  18. [18] El Dika K., Martel Y., Stability of N solitary waves for the generalized BBM equations, Dyn. Partial Differ. Equ.1 (2004) 401-437. Zbl1080.35116MR2127579
  19. [19] El Dika K., Molinet L., Exponential decay of H 1 -localized solutions and stability of the train ofN solitary waves for the Camassa–Holm equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.365 (2007) 2313-2331. Zbl1152.35470MR2329151
  20. [20] Fokas A.S., Fuchssteiner B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D4 (1981) 47-66. Zbl1194.37114MR636470
  21. [21] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
  22. [22] Holden H., Raynaud X., A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, Discrete Contin. Dyn. Syst.14 (3) (2006) 505-523. Zbl1111.35061MR2171724
  23. [23] Johnson R.S., Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech.455 (2002) 63-82. Zbl1037.76006MR1894796
  24. [24] Martel Y., Merle F., Tsai T.-p., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys.231 (2002) 347-373. Zbl1017.35098MR1946336
  25. [25] Martel Y., Merle F., Tsai T.-p., Stability in H 1 of the sum ofK solitary waves for some nonlinear Schrödinger equations, Duke Math. J.133 (3) (2006) 405-466. Zbl1099.35134MR2228459
  26. [26] Molinet L., On well-posedness results for Camassa–Holm equation on the line: A survey, J. Nonlinear Math. Phys.11 (2004) 521-533. Zbl1069.35076MR2097662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.