Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations
Louis Jeanjean; Marco Squassina
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1701-1716
- ISSN: 0294-1449
Access Full Article
topHow to cite
topJeanjean, Louis, and Squassina, Marco. "Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1701-1716. <http://eudml.org/doc/78909>.
@article{Jeanjean2009,
author = {Jeanjean, Louis, Squassina, Marco},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {least energy solutions; radial symmetry; quasi-linear equations; nonsmooth critical point theory; Pucci-Serrin variational identity},
language = {eng},
number = {5},
pages = {1701-1716},
publisher = {Elsevier},
title = {Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations},
url = {http://eudml.org/doc/78909},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Jeanjean, Louis
AU - Squassina, Marco
TI - Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1701
EP - 1716
LA - eng
KW - least energy solutions; radial symmetry; quasi-linear equations; nonsmooth critical point theory; Pucci-Serrin variational identity
UR - http://eudml.org/doc/78909
ER -
References
top- [1] Arcoya D., Boccardo L., Critical points for multiple integrals of the calculus of variations, Arch. Ration. Mech. Anal.134 (1996) 249-274. Zbl0884.58023MR1412429
- [2] Bensoussan A., Boccardo L., Murat F., On a nonlinear partial differential equation having natural growth and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire5 (1988) 347-364. Zbl0696.35042MR963104
- [3] Berestycki H., Lions P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [4] Boccardo L., Murat F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal.19 (1992) 581-597. Zbl0783.35020MR1183665
- [5] Boccardo L., Murat F., Puel J.P., Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math.41 (1982) 507-534. Zbl0524.35041MR766873
- [6] Brezis H., Browder F.E., Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris287 (1978) 113-115. Zbl0381.46019MR511925
- [7] Brezis H., Lieb E.H., Minimum action solutions of some vector field equations, Comm. Math. Phys.96 (1984) 97-113. Zbl0579.35025MR765961
- [8] Byeon J., Jeanjean L., Maris M., Symmetry and monotonicity of least energy solutions, preprint, arXiv:0806.0299, www.arxiv.org. Zbl1226.35041MR2558325
- [9] Campa I., Degiovanni M., Subdifferential calculus and nonsmooth critical point theory, SIAM J. Optim.10 (2000) 1020-1048. Zbl1042.49018MR1777078
- [10] Canino A., Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal.6 (1995) 357-370. Zbl0863.35038MR1399545
- [11] Canino A., Degiovanni M., Nonsmooth critical point theory and quasilinear elliptic equations, in: Topological Methods in Differential Equations and Inclusions, Montreal, PQ, 1994, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, Kluwer Acad. Publ., Dordrecht, 1995, pp. 1-50. Zbl0851.35038MR1368669
- [12] Corvellec J.N., Degiovanni M., Marzocchi M., Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal.1 (1993) 151-171. Zbl0789.58021MR1215263
- [13] Degiovanni M., Marzocchi M., A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl.167 (1994) 73-100. Zbl0828.58006MR1313551
- [14] Degiovanni M., Musesti A., Squassina M., On the regularity of solutions in the Pucci–Serrin identity, Calc. Var. Partial Differential Equations18 (2003) 317-334. Zbl1046.35039MR2018671
- [15] DiBenedetto E., local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983) 827-850. Zbl0539.35027MR709038
- [16] do O J.M., Medeiros E.S., Remarks on least energy solutions for quasilinear elliptic problems in , Electron. J. Differential Equations83 (2003) 1-14. Zbl1109.35318MR1995609
- [17] Ekeland I., Nonconvex minimization problems, Bull. Amer. Math. Soc.1 (1979) 443-474. Zbl0441.49011MR526967
- [18] Ferrero A., Gazzola F., On the subcriticality assumptions for the existence of ground states of quasilinear elliptic equations, Adv. Differential Equations8 (2003) 1081-1106. Zbl1290.35096MR1989290
- [19] Frehse J., A note on the Hölder continuity of solutions of variational problems, Abh. Math. Sem. Univ. Hamburg43 (1975) 59-63. Zbl0316.49008MR377648
- [20] Gazzola F., Serrin J., Tang M., Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Differential Equations5 (2000) 1-30. Zbl0987.35064MR1734535
- [21] Giacomini A., Squassina M., Multi-peak solutions for a class of degenerate elliptic equations, Asymptotic Anal.36 (2003) 115-147. Zbl1137.35362MR2021529
- [22] Ioffe A., On lower semicontinuity of integral functionals. I, SIAM J. Control Optim.15 (1977) 521-538. Zbl0361.46037MR637234
- [23] Ioffe A., On lower semicontinuity of integral functionals. II, SIAM J. Control Optim.15 (1977) 991-1000. Zbl0379.46022MR637235
- [24] Ioffe A., Schwartzman E., Metric critical point theory 1. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl.75 (1996) 125-153. Zbl0852.58018MR1380672
- [25] Katriel G., Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 189-209. Zbl0834.58007MR1267366
- [26] Lieb E.H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math.74 (1983) 441-448. Zbl0538.35058MR724014
- [27] Mariş M., On the symmetry of minimizers, Arch. Ration. Mech. Anal., arXiv:0712.3386, www.arxiv.orgDOI:10.1007/s00205-008-0136-2. Zbl1159.49005MR2486598
- [28] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J.35 (1986) 681-703. Zbl0625.35027MR855181
- [29] Serrin J., Local behavior of solutions of quasi-linear equations, Acta Math.111 (1964) 247-302. Zbl0128.09101MR170096
- [30] Squassina M., On the existence of positive entire solutions of nonlinear elliptic equations, Topol. Methods Nonlinear Anal.17 (2001) 23-39. Zbl0997.35019MR1846976
- [31] Squassina M., Weak solutions to general Euler's equations via nonsmooth critical point theory, Ann. Fac. Sci. Toulouse Math.9 (2000) 113-131. Zbl0983.35050MR1815943
- [32] Stampacchia G., Équations elliptiques du second ordre à coefficients discontinus, in: Été, 1965, Séminaire de Mathématiques Supérieures, vol. 16, Les Presses de l'Université de Montréal, Montreal, Quebec, 1966. Zbl0151.15501MR251373
- [33] Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984) 126-150. Zbl0488.35017MR727034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.