Weak solutions to general Euler's equations via nonsmooth critical point theory

Marco Squassina

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 1, page 113-131
  • ISSN: 0240-2963

How to cite

top

Squassina, Marco. "Weak solutions to general Euler's equations via nonsmooth critical point theory." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (2000): 113-131. <http://eudml.org/doc/73506>.

@article{Squassina2000,
author = {Squassina, Marco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {nonlinear elliptic boundary value problems},
language = {eng},
number = {1},
pages = {113-131},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Weak solutions to general Euler's equations via nonsmooth critical point theory},
url = {http://eudml.org/doc/73506},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Squassina, Marco
TI - Weak solutions to general Euler's equations via nonsmooth critical point theory
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 113
EP - 131
LA - eng
KW - nonlinear elliptic boundary value problems
UR - http://eudml.org/doc/73506
ER -

References

top
  1. [1] Amann ( H.). - Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z.151 (1976), 281-295. Zbl0331.35026MR430526
  2. [2] Ambrosetti ( A.). - On the existence of multiple solutions for al class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova49 (1973), 195-204. Zbl0273.35037MR336068
  3. [3] Ambrosetti ( A.) and Rabinowitz ( P.H.). — Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063MR370183
  4. [4] Arcoya ( D.), Boccardo ( L.). - Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal.134 (1996), 249-274. Zbl0884.58023MR1412429
  5. [5] Arioli ( G.), Gazzola ( F.). — Weak solutions of quasilinear elliptic PDE's at resonance, Ann. Fac. Sci. Toulouse6 (1997), 573-589. Zbl0920.35050MR1624294
  6. [6] Bartsch ( T.). — Topological methods for variational problems with symmetries, Springer Verlag (1993). Zbl0789.58001MR1295238
  7. [7] Boccardo ( L.), Murat ( F.). - Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal.19 (1992), 581-597. Zbl0783.35020MR1183665
  8. [8] Brezis ( H.), Browder ( F.E.). — Sur une propriété des espaces de Sobolev, C. R. Acad. Sc.Paris287 (1978), 113-115. Zbl0381.46019MR511925
  9. [9] Canino ( A.). - Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal.6 (1995), 357-370. Zbl0863.35038MR1399545
  10. [10] Canino ( A.). - On a variational approach to some quasilinear problems, Serdica Math. J.22 (1996), 399-426. Zbl0867.35030MR1455392
  11. [11] Canino ( A.). — On a jumping problem for quasilinear elliptic equations, Math. Z.226 (1997), 193-210. Zbl0936.35065MR1477627
  12. [12] Canino ( A.), Degiovanni ( M.). - Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, 1-50 - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal (1994), NATO ASI Series - Kluwer A.P. (1995). Zbl0851.35038MR1368669
  13. [13] Coffman ( C.V.). - A minimum-maximum principle for a class of nonlinear integral equations, J. Anal. Math.22 (1969), 391-410. Zbl0179.15601MR249983
  14. [14] Corvellec ( J.N.), Degiovanni ( M.). - Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Diff. Eq.136 (1997), 268-293. Zbl1139.35335MR1448826
  15. [15] Corvellec ( J.N.), Degiovanni ( M.), Marzocchi ( M.). - Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal.1 (1993), 151-171. Zbl0789.58021MR1215263
  16. [16] Degiovanni ( M.), Marzocchi ( M.). — A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73-100. Zbl0828.58006MR1313551
  17. [17] Ioffe ( A.), Schwartzman ( E.). — Metric critical point theory 1. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl.75 (1996), 125-153. Zbl0852.58018MR1380672
  18. [18] Ladyzhenskaya ( O.A.), URAL'TSEVA ( N.N.). - Equations aux dérivées partielles de type elliptique, Dunod, Paris, (1968). Zbl0164.13001MR239273
  19. [19] Katriel ( G.). - Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994), 189-209. Zbl0834.58007MR1267366
  20. [20] Pellacci ( B.). — Critical points for non differentiable functionals, Boll. Un. Mat. Ital. B (7) 11 (1997), 733-749. Zbl0892.58013MR1479520
  21. [21] Rabinowitz ( P.H.). — Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series Math.65Amer. Math. Soc.Providence, R.I. (1986). Zbl0609.58002MR845785
  22. [22] Struwe ( M.). - Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici58 (1983), 509-527. Zbl0531.35035MR727715

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.