Weak solutions to general Euler's equations via nonsmooth critical point theory
Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)
- Volume: 9, Issue: 1, page 113-131
- ISSN: 0240-2963
Access Full Article
topHow to cite
topSquassina, Marco. "Weak solutions to general Euler's equations via nonsmooth critical point theory." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (2000): 113-131. <http://eudml.org/doc/73506>.
@article{Squassina2000,
author = {Squassina, Marco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {nonlinear elliptic boundary value problems},
language = {eng},
number = {1},
pages = {113-131},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Weak solutions to general Euler's equations via nonsmooth critical point theory},
url = {http://eudml.org/doc/73506},
volume = {9},
year = {2000},
}
TY - JOUR
AU - Squassina, Marco
TI - Weak solutions to general Euler's equations via nonsmooth critical point theory
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 113
EP - 131
LA - eng
KW - nonlinear elliptic boundary value problems
UR - http://eudml.org/doc/73506
ER -
References
top- [1] Amann ( H.). - Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z.151 (1976), 281-295. Zbl0331.35026MR430526
- [2] Ambrosetti ( A.). - On the existence of multiple solutions for al class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova49 (1973), 195-204. Zbl0273.35037MR336068
- [3] Ambrosetti ( A.) and Rabinowitz ( P.H.). — Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. Zbl0273.49063MR370183
- [4] Arcoya ( D.), Boccardo ( L.). - Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal.134 (1996), 249-274. Zbl0884.58023MR1412429
- [5] Arioli ( G.), Gazzola ( F.). — Weak solutions of quasilinear elliptic PDE's at resonance, Ann. Fac. Sci. Toulouse6 (1997), 573-589. Zbl0920.35050MR1624294
- [6] Bartsch ( T.). — Topological methods for variational problems with symmetries, Springer Verlag (1993). Zbl0789.58001MR1295238
- [7] Boccardo ( L.), Murat ( F.). - Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal.19 (1992), 581-597. Zbl0783.35020MR1183665
- [8] Brezis ( H.), Browder ( F.E.). — Sur une propriété des espaces de Sobolev, C. R. Acad. Sc.Paris287 (1978), 113-115. Zbl0381.46019MR511925
- [9] Canino ( A.). - Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal.6 (1995), 357-370. Zbl0863.35038MR1399545
- [10] Canino ( A.). - On a variational approach to some quasilinear problems, Serdica Math. J.22 (1996), 399-426. Zbl0867.35030MR1455392
- [11] Canino ( A.). — On a jumping problem for quasilinear elliptic equations, Math. Z.226 (1997), 193-210. Zbl0936.35065MR1477627
- [12] Canino ( A.), Degiovanni ( M.). - Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, 1-50 - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal (1994), NATO ASI Series - Kluwer A.P. (1995). Zbl0851.35038MR1368669
- [13] Coffman ( C.V.). - A minimum-maximum principle for a class of nonlinear integral equations, J. Anal. Math.22 (1969), 391-410. Zbl0179.15601MR249983
- [14] Corvellec ( J.N.), Degiovanni ( M.). - Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Diff. Eq.136 (1997), 268-293. Zbl1139.35335MR1448826
- [15] Corvellec ( J.N.), Degiovanni ( M.), Marzocchi ( M.). - Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal.1 (1993), 151-171. Zbl0789.58021MR1215263
- [16] Degiovanni ( M.), Marzocchi ( M.). — A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73-100. Zbl0828.58006MR1313551
- [17] Ioffe ( A.), Schwartzman ( E.). — Metric critical point theory 1. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl.75 (1996), 125-153. Zbl0852.58018MR1380672
- [18] Ladyzhenskaya ( O.A.), URAL'TSEVA ( N.N.). - Equations aux dérivées partielles de type elliptique, Dunod, Paris, (1968). Zbl0164.13001MR239273
- [19] Katriel ( G.). - Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994), 189-209. Zbl0834.58007MR1267366
- [20] Pellacci ( B.). — Critical points for non differentiable functionals, Boll. Un. Mat. Ital. B (7) 11 (1997), 733-749. Zbl0892.58013MR1479520
- [21] Rabinowitz ( P.H.). — Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series Math.65Amer. Math. Soc.Providence, R.I. (1986). Zbl0609.58002MR845785
- [22] Struwe ( M.). - Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici58 (1983), 509-527. Zbl0531.35035MR727715
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.