The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere

Paul Godin

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2227-2252
  • ISSN: 0294-1449

How to cite

top

Godin, Paul. "The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2227-2252. <http://eudml.org/doc/78932>.

@article{Godin2009,
author = {Godin, Paul},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible Euler equations; exterior initial-boundary value problem; spherically symmetric solutions; lifespan},
language = {eng},
number = {6},
pages = {2227-2252},
publisher = {Elsevier},
title = {The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere},
url = {http://eudml.org/doc/78932},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Godin, Paul
TI - The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2227
EP - 2252
LA - eng
KW - compressible Euler equations; exterior initial-boundary value problem; spherically symmetric solutions; lifespan
UR - http://eudml.org/doc/78932
ER -

References

top
  1. [1] Alinhac S., Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension 2, Invent. Math.111 (1993) 627-670. Zbl0798.35129MR1202138
  2. [2] Godin P., Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations14 (3) (1989) 299-374. Zbl0676.35065MR987056
  3. [3] Godin P., The lifespan of a class of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions, Arch. Ration. Mech. Anal.177 (2005) 479-511. Zbl1075.76052MR2187620
  4. [4] Godin P., The lifespan of solutions of exterior radial quasilinear Cauchy–Neumann problems, J. Hyperbolic Differ. Equ.5 (3) (2008) 519-546. Zbl1162.35417MR2441090
  5. [5] Guès O., Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations15 (5) (1990) 595-645. Zbl0712.35061MR1070840
  6. [6] Hörmander L., The Analysis of Linear Partial Differential Operators I, Grundlehren Math. Wiss., vol. 256, Springer, Berlin, 1983. Zbl0521.35001MR717035
  7. [7] Hörmander L., The lifespan of classical solutions of non-linear hyperbolic equations, in: Cordes H.O., Gramsch B., Widom H. (Eds.), Pseudo-Differential Operators, Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 214-280. Zbl0632.35045MR897781
  8. [8] John F., Blow-up of radial solutions of u t t = c 2 u t Δ u in three space dimensions, Mat. Apl. Comput.4 (1) (1985) 3-18. Zbl0597.35082MR808321
  9. [9] Klainerman S., Sideris T., On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math.49 (1996) 307-322. Zbl0867.35064MR1374174
  10. [10] Schochet S., The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys.104 (1986) 49-75. Zbl0612.76082MR834481
  11. [11] Secchi P., Well-posedness of characteristic symmetric hyperbolic systems, Arch. Ration. Mech. Anal.134 (1996) 155-197. Zbl0857.35080MR1405665
  12. [12] Sideris T., Delayed singularity formation in 2D compressible flow, Amer. J. Math.119 (1997) 371-422. Zbl0876.35091MR1439554

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.