The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2227-2252
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGodin, Paul. "The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2227-2252. <http://eudml.org/doc/78932>.
@article{Godin2009,
author = {Godin, Paul},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible Euler equations; exterior initial-boundary value problem; spherically symmetric solutions; lifespan},
language = {eng},
number = {6},
pages = {2227-2252},
publisher = {Elsevier},
title = {The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere},
url = {http://eudml.org/doc/78932},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Godin, Paul
TI - The lifespan of spherically symmetric solutions of the compressible Euler equations outside an impermeable sphere
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2227
EP - 2252
LA - eng
KW - compressible Euler equations; exterior initial-boundary value problem; spherically symmetric solutions; lifespan
UR - http://eudml.org/doc/78932
ER -
References
top- [1] Alinhac S., Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension 2, Invent. Math.111 (1993) 627-670. Zbl0798.35129MR1202138
- [2] Godin P., Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations14 (3) (1989) 299-374. Zbl0676.35065MR987056
- [3] Godin P., The lifespan of a class of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions, Arch. Ration. Mech. Anal.177 (2005) 479-511. Zbl1075.76052MR2187620
- [4] Godin P., The lifespan of solutions of exterior radial quasilinear Cauchy–Neumann problems, J. Hyperbolic Differ. Equ.5 (3) (2008) 519-546. Zbl1162.35417MR2441090
- [5] Guès O., Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations15 (5) (1990) 595-645. Zbl0712.35061MR1070840
- [6] Hörmander L., The Analysis of Linear Partial Differential Operators I, Grundlehren Math. Wiss., vol. 256, Springer, Berlin, 1983. Zbl0521.35001MR717035
- [7] Hörmander L., The lifespan of classical solutions of non-linear hyperbolic equations, in: Cordes H.O., Gramsch B., Widom H. (Eds.), Pseudo-Differential Operators, Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 214-280. Zbl0632.35045MR897781
- [8] John F., Blow-up of radial solutions of in three space dimensions, Mat. Apl. Comput.4 (1) (1985) 3-18. Zbl0597.35082MR808321
- [9] Klainerman S., Sideris T., On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math.49 (1996) 307-322. Zbl0867.35064MR1374174
- [10] Schochet S., The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys.104 (1986) 49-75. Zbl0612.76082MR834481
- [11] Secchi P., Well-posedness of characteristic symmetric hyperbolic systems, Arch. Ration. Mech. Anal.134 (1996) 155-197. Zbl0857.35080MR1405665
- [12] Sideris T., Delayed singularity formation in 2D compressible flow, Amer. J. Math.119 (1997) 371-422. Zbl0876.35091MR1439554
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.