Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings

Qilong Gu; Tatsien Li

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2373-2384
  • ISSN: 0294-1449

How to cite

top

Gu, Qilong, and Li, Tatsien. "Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2373-2384. <http://eudml.org/doc/78938>.

@article{Gu2009,
author = {Gu, Qilong, Li, Tatsien},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {exact boundary controllability; quasilinear wave equation; planar tree-like network of strings; number of boundary controls},
language = {eng},
number = {6},
pages = {2373-2384},
publisher = {Elsevier},
title = {Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings},
url = {http://eudml.org/doc/78938},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Gu, Qilong
AU - Li, Tatsien
TI - Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2373
EP - 2384
LA - eng
KW - exact boundary controllability; quasilinear wave equation; planar tree-like network of strings; number of boundary controls
UR - http://eudml.org/doc/78938
ER -

References

top
  1. [1] Ammari K., Jellouli M., Stabilization of star-shaped networks of strings, Differential Integral Equations17 (2004) 1395-1410. Zbl1150.93537MR2100033
  2. [2] Ammari K., Jellouli M., Remark on stabilization of tree-shaped networks of strings, Appl. Math.52 (2007) 327-343. Zbl1164.93315MR2324731
  3. [3] Ammari K., Jellouli M., Khenissi M., Stabilization of generic trees of strings, J. Dyn. Control Syst.11 (2005) 177-193. Zbl1064.93034MR2131807
  4. [4] Dáger R., Zuazua E., Wave Propagation, Observation and Control in 1-D Flexible Multi-structures, Math. Appl., vol. 50, 2000. Zbl1083.74002
  5. [5] Emanuilov O.Yu., Boundary control by semilinear evolution equations, Russian Math. Surveys44 (1989) 183-184. Zbl0713.93030MR1024065
  6. [6] Lagnese J.E., Leugering G., Schmidt E.J.P.G., Modeling, Analysis and Control of Multi-link Structures, Systems Control Found. Appl., Birhäuser-Basel, 1994. Zbl0810.73004
  7. [7] Lasiecka I., Triggiani R., Exact controllability of semilinear abstract systems with applications to waves and plates boundary control problems, Appl. Math. Optim.23 (1991) 109-154. Zbl0729.93023MR1086465
  8. [8] Li Tatsien, Jin Yi, Semi-global C 1 solution to the mixed initial–boundary value problem for quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B22 (2001) 325-336. Zbl1005.35058MR1845753
  9. [9] Li Tatsien, Rao Bopeng, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim.41 (2003) 1748-1755. Zbl1032.35124
  10. [10] Li Tatsien, Rao Bopeng, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B23 (2002) 209-218. Zbl1184.35196MR1924137
  11. [11] Li Tatsien, Yu Lixin, Contrôlabilité exacte frontière pour les équations des ondes quasi linéaires unidimensionnelles, C. R. Acad. Sci. Paris Sér. I337 (2003) 271-276. Zbl1029.93036MR2009120
  12. [12] Li Tatsien, Yu Lixin, Exact boundary controllability for 1-D quasilinear wave equations, SIAM J. Control Optim.45 (2006) 1074-1083. Zbl1116.93021MR2247726
  13. [13] Li Tatsien, Yu Wenci, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univ. Math. Ser., vol. V, 1985. Zbl0627.35001
  14. [14] Lions J.-L., Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, vol. I, Masson, 1988. Zbl0653.93003
  15. [15] Lions J.-L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev.30 (1988) 1-68. Zbl0644.49028MR931277
  16. [16] Nicaise S., Valein J., Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media2 (2007) 425-479, (electronic). Zbl1211.35050MR2318841
  17. [17] Russell D.L., Controllability and stabilizability theory for linear partial differential equations, Recent progress and open questions, SIAM Rev.20 (1978) 639-739. Zbl0397.93001MR508380
  18. [18] Schmidt E.J.P.G., On the modeling and exact controllability of networks of vibrating strings, SIAM J. Control Optim.30 (1992) 229-245. Zbl0755.35008MR1145715
  19. [19] Zuazua E., Exact controllability for the semilinear wave equation, J. Math. Pures Appl.69 (1990) 1-31. Zbl0638.49017MR1054122
  20. [20] Zuazua E., Exact controllability for semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 109-129. Zbl0769.93017MR1212631
  21. [21] Zuazua E., Controllability of partial differential equations and its semi-discrete approximation, Discrete Contin. Dyn. Syst.8 (2002) 469-513. Zbl1005.35019MR1897693

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.