Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2373-2384
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGu, Qilong, and Li, Tatsien. "Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2373-2384. <http://eudml.org/doc/78938>.
@article{Gu2009,
author = {Gu, Qilong, Li, Tatsien},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {exact boundary controllability; quasilinear wave equation; planar tree-like network of strings; number of boundary controls},
language = {eng},
number = {6},
pages = {2373-2384},
publisher = {Elsevier},
title = {Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings},
url = {http://eudml.org/doc/78938},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Gu, Qilong
AU - Li, Tatsien
TI - Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2373
EP - 2384
LA - eng
KW - exact boundary controllability; quasilinear wave equation; planar tree-like network of strings; number of boundary controls
UR - http://eudml.org/doc/78938
ER -
References
top- [1] Ammari K., Jellouli M., Stabilization of star-shaped networks of strings, Differential Integral Equations17 (2004) 1395-1410. Zbl1150.93537MR2100033
- [2] Ammari K., Jellouli M., Remark on stabilization of tree-shaped networks of strings, Appl. Math.52 (2007) 327-343. Zbl1164.93315MR2324731
- [3] Ammari K., Jellouli M., Khenissi M., Stabilization of generic trees of strings, J. Dyn. Control Syst.11 (2005) 177-193. Zbl1064.93034MR2131807
- [4] Dáger R., Zuazua E., Wave Propagation, Observation and Control in 1-D Flexible Multi-structures, Math. Appl., vol. 50, 2000. Zbl1083.74002
- [5] Emanuilov O.Yu., Boundary control by semilinear evolution equations, Russian Math. Surveys44 (1989) 183-184. Zbl0713.93030MR1024065
- [6] Lagnese J.E., Leugering G., Schmidt E.J.P.G., Modeling, Analysis and Control of Multi-link Structures, Systems Control Found. Appl., Birhäuser-Basel, 1994. Zbl0810.73004
- [7] Lasiecka I., Triggiani R., Exact controllability of semilinear abstract systems with applications to waves and plates boundary control problems, Appl. Math. Optim.23 (1991) 109-154. Zbl0729.93023MR1086465
- [8] Li Tatsien, Jin Yi, Semi-global solution to the mixed initial–boundary value problem for quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B22 (2001) 325-336. Zbl1005.35058MR1845753
- [9] Li Tatsien, Rao Bopeng, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim.41 (2003) 1748-1755. Zbl1032.35124
- [10] Li Tatsien, Rao Bopeng, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B23 (2002) 209-218. Zbl1184.35196MR1924137
- [11] Li Tatsien, Yu Lixin, Contrôlabilité exacte frontière pour les équations des ondes quasi linéaires unidimensionnelles, C. R. Acad. Sci. Paris Sér. I337 (2003) 271-276. Zbl1029.93036MR2009120
- [12] Li Tatsien, Yu Lixin, Exact boundary controllability for 1-D quasilinear wave equations, SIAM J. Control Optim.45 (2006) 1074-1083. Zbl1116.93021MR2247726
- [13] Li Tatsien, Yu Wenci, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univ. Math. Ser., vol. V, 1985. Zbl0627.35001
- [14] Lions J.-L., Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, vol. I, Masson, 1988. Zbl0653.93003
- [15] Lions J.-L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev.30 (1988) 1-68. Zbl0644.49028MR931277
- [16] Nicaise S., Valein J., Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media2 (2007) 425-479, (electronic). Zbl1211.35050MR2318841
- [17] Russell D.L., Controllability and stabilizability theory for linear partial differential equations, Recent progress and open questions, SIAM Rev.20 (1978) 639-739. Zbl0397.93001MR508380
- [18] Schmidt E.J.P.G., On the modeling and exact controllability of networks of vibrating strings, SIAM J. Control Optim.30 (1992) 229-245. Zbl0755.35008MR1145715
- [19] Zuazua E., Exact controllability for the semilinear wave equation, J. Math. Pures Appl.69 (1990) 1-31. Zbl0638.49017MR1054122
- [20] Zuazua E., Exact controllability for semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 109-129. Zbl0769.93017MR1212631
- [21] Zuazua E., Controllability of partial differential equations and its semi-discrete approximation, Discrete Contin. Dyn. Syst.8 (2002) 469-513. Zbl1005.35019MR1897693
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.